

3W Audio Power Amplifier with Shutdown Mode

❖ GENERAL DESCRIPTION

The AX4001 is a mono bridged audio power amplifier capable of delivering 3W of continuous average power into a 3Ω load with less than 10% THD when powered by a 5V power supply. It does not require output coupling capacitors or bootstrap capacitors, and is ideal for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The AX4001 features a low-power consumption shutdown mode, and an internal thermal shutdown protection mechanism. Advanced pop & click circuitry is built in to eliminate noises that would otherwise occur during turn-on and turn-off transitions. The AX4001 is unity-gain stable and can be configured by external gain-setting resistors.

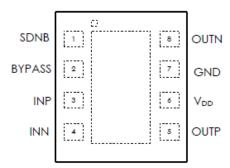
AXElite products are RoHS and Halogen free compliant.

Key Specifications

- · BTL mode PO at THD+N=1%, f=1kHz, VDD =5V
 - 2.45 W (typ) into 3Ω
 - 2.1 W (typ) into 4Ω
 - 1.2 W (typ) into 8Ω
- · BTL mode PO at THD+N=10%, f=1kHz, VDD =5V 3W (typ) into 3Ω
- · Shutdown current 0.1µA (typ)

Features

- · No output coupling capacitors, bootstrap capacitors, or snubber circuits required
- · Unity-gain stable
- · TDFN-8
- · External gain configuration capability


Applications

- · Portable Computers
- Desktop computers

❖ PIN ASSIGNMENT

The packages of AX4001 are TDFN-8L(3*3); the pin assignment is given by:

Pin #	Pin Name	Function		
1	SNDB	Low Level Shutdown		
2	BYPASS	Mid-supply Voltage biasing, Adding a Bypass Capacitor to Improves PSRR and Noise Immunity / Turn-on Time Define		
3	INP	Biased by Mid-supply Voltage / One-side Audio Input for Differential Signal		
4	INN	Negative Feedback for Audio Input		
5	OUTP	Positive (Relative to INN) Audio Output to Load		
6	VDD	Power Supply		
7	GND	Ground		
8	OUTN	Negative (Relative to INN) Audio Output to Load		

❖ ORDER/MARKING INFORMATION

Order Information	Top Marking (TDFN-8L)
Package Type Packing J8:TDFN-8L(3*3) Blank: Tube A: Taping	D W→ AX4001 Y W X → ID Code: Internal Week: 01~26(A~Z) 27~52(a~z) Year: A = 2010 1 = 2011

❖ ABSOLUTE MAXIMUM RATINGS

Characteristics	Rating	Unit
Supply Voltage	6 V	V
Storage Temperature Range	-65°C to +150°C	°C
Input Voltage	-0.3 V to VDD +0.3 V	V
Power Dissipation	Internally Limited	W
ESD Susceptibility	HBM2KV	V
ESD Susceptibility	MM200V	V
Junction Temperature	150°C	°C
Thermal Resistance (θ _{JA})	180°C/W	°C/W
Operating Range (Temperature Range)	-40°C≦TA ≦85°C	°C
Operating Range(Supply Voltage)	2.6 V≦VDD≦5.5 V	V

❖ Typical Application

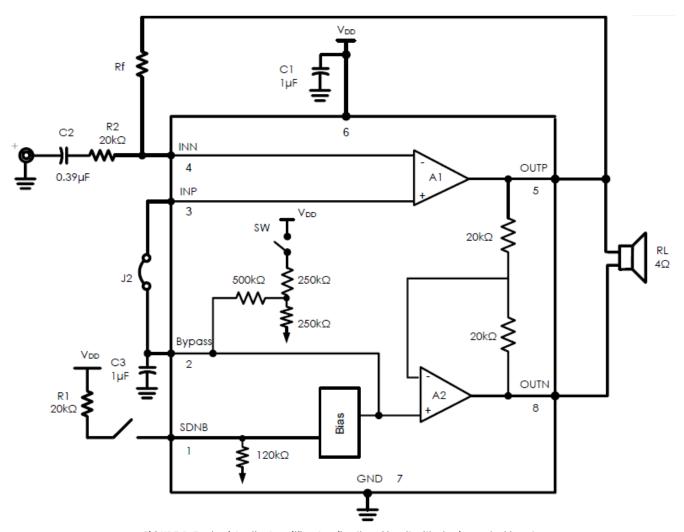


FIGURE 1. Typical Audio Amplifier Application Circuit with single-ended input

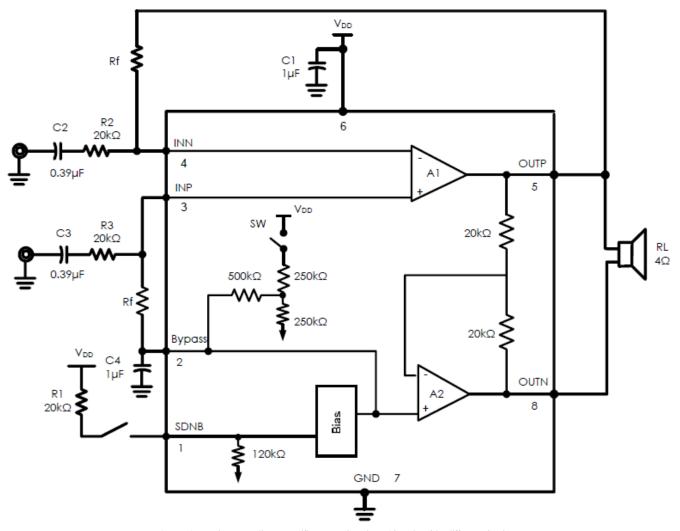
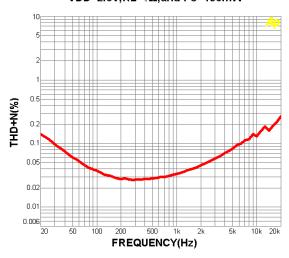


FIGURE 2. Typical Audio Amplifier Application Circuit with differential input

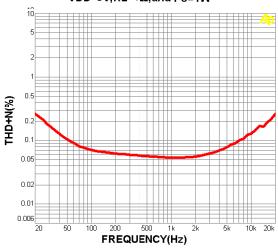
❖ Electrical Characteristics

The following specifications apply for V_{DD} = 5V and R_L = 4Ω unless otherwise specified. Limits apply for T_A = $25^{\circ}C$.

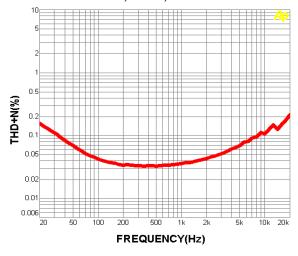
		Conditions	Conditions			Units
Symbol	Parameter		Min	Typical	Limit	(Limits)
I _{DD}	Quiescent Power Supply Current	V _{IN} = 0V, IO = 0A		5.0	10.0	mA
I _{SD}	Shutdown Current	V _{SDNB} = GND		0.1	1.0	μΑ
V_{OS}	Output Offset Voltage	$V_{IN} = 0V$		5.0	50	mV
Ро	Output Power	$THD + N = 1 \%, f = 1 kHz$ $R_L = 3 \Omega$ $R_L = 4 \Omega$ $R_L = 8 \Omega$ $THD + N = 10 \%, f = 1 kHz$ $R_L = 3 \Omega$ $R_L = 4 \Omega$ $R_L = 8 \Omega$		2.45 2.1 1.2 3 2.5 1.5		w
THD+N PSRR	Total Harmonic Distortion + Noise Power Supply Rejection Ratio	$f=1kHz,AV=2,P_O=1W$ $R_L=3\Omega$ $R_L=4\Omega$ $R_L=8\Omega$ $V_{RIPPLE}=200mV,sinep-p$ at 217Hz,		0.05 0.02 0.013	55	% dB


The following specifications apply for VDD = 2.6V and RL = 4Ω unless otherwise specified. Limits apply for TA = 25° C.

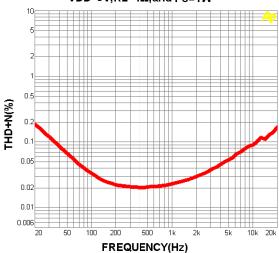
	Parameter	Conditions	Conditions			Units
Symbol			Min	Typical	Limit	(Limits)
I _{DD}	Quiescent Power Supply Current	V _{IN} = 0V, IO = 0A		4.0	10.0	mA
I _{SD}	Shutdown Current	V _{SDNB} = GND		0.1	1.0	μA
Vos	Output Offset Voltage	V _{IN} = 0V		5.0	50	mV
Ро	Output Power	$THD + N = 1 \%, f = 1 kHz$ $R_L = 3 \Omega$ $R_L = 4 \Omega$ $R_L = 8 \Omega$ $THD + N = 10 \%, f = 1 kHz$ $R_L = 3 \Omega$ $R_L = 4 \Omega$ $R_L = 8 \Omega$		0.7 0.5 0.32 0.85 0.62 0.52		w
THD+N	Total Harmonic Distortion + Noise	$f=1\text{kHz, AV=2, P}_{O}=150\text{mW}$ $R_{L}=3\Omega$ $R_{L}=4\Omega$ $R_{L}=8\Omega$		0.03 0.035 0.02		%
PSRR	Power Supply Rejection Ratio	V_{RPPLE} =200mV, sine p-p at 217Hz, input 10 Ω to GND		60	55	dB


❖ Typical Performance Characteristics

THD+N vs Frequency VDD=2.6V,RL=3Ω,and Po=150mW

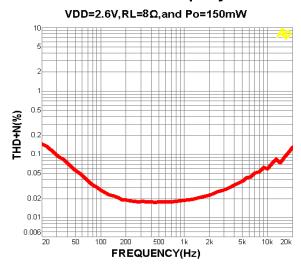

THD + Noise vs Frequency $_{DD}$ = 2.6V, R_{L} = 3Ω , Po = 150mW, A_{V} = 2

THD+N vs Frequency VDD=5V,RL=3Ω,and Po=1W

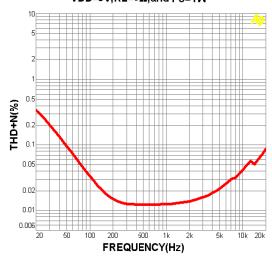

THD + Noise vs Frequency @ $V_{DD} = 5V$, $R_L = 3\Omega$, Po = 1W, $A_V = 2$

THD+N vs Freqency VDD=2.6V,RL=4Ω,and Po=150mW

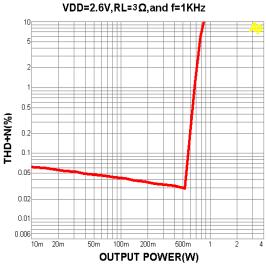
THD + Noise vs Frequency @ $V_{DD} = 2.6V$, $R_L = 4\Omega$, Po = 150mW, $A_V = 2$


THD+N vs Frequency VDD=5V,RL=4Ω,and Po=1W

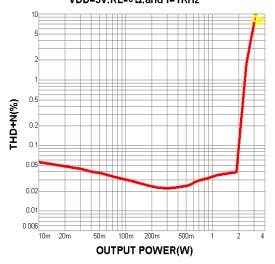
THD + Noise vs Frequency @ $V_{DD} = 5V$, $R_L = 4\Omega$, PO = 1W, $A_V = 2$



THD+N vs Freqency


THD + Noise vs Frequency @ $V_{DD} = 2.6V$, $R_L = 8\Omega$, Po = 150mW, $A_V = 2$

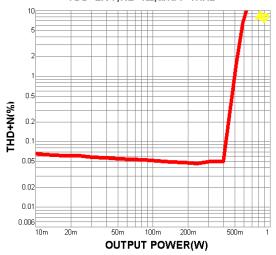
THD+N vs Frequency VDD=5V,RL=8Ω,and Po=1W


THD + Noise vs Frequency @ $V_{DD} = 5V$, $R_L = 8\Omega$, Po = 1W, $A_V = 2$

THD+N vs. Output Power

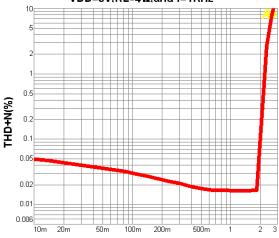
THD + Noise vs Output Power @ V_{DD} =2.6V, R_L = 3Ω , 1kHz, BW=60kHz, A_V = 2

THD+N vs. Output Power VDD=5V,RL=3 Ω,and f=1KHz



THD + Noise vs Output Power @ V_{DD} =5V, R_L = 3Ω , 1kHz, BW=60kHz, A_V = 2

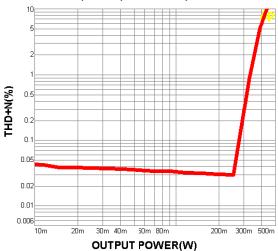
THD+N vs. Output Power


VDD=2.6V,RL=4Ω,and f=1KHz

THD + Noise vs Output Power @ V_{DD} =2.6V, R_L = 4Ω , 1kHz, BW=60kHz, A_V = 2

THD+N vs. Output Power

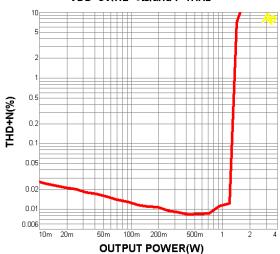
VDD=5V.RL=4Ω.and f=1KHz



OUTPUT POWER(W)

THD + Noise vs Output Power @ $V_{DD} = 5V$, $R_L = 4\Omega$, 1kHz, BW=60kHz, $A_V = 2$

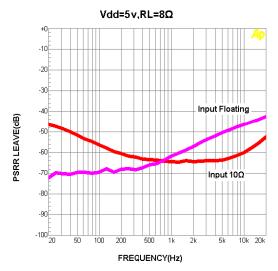
THD+N vs. Output Power


VDD=2.6V,RL=8Ω, and f=1KHz, BW=60KHz

THD + Noise vs Output Power @ V_{DD} =2.6V, R_L = 8Ω , 1kHz, BW=60kHz, A_V = 2

THD+N vs. Output Power

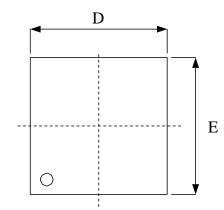
VDD=5V.RL=8Ω.and f=1KHz

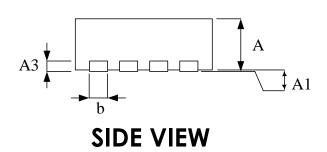

THD + Noise vs Output Power @ V_{DD} =5V, R_L = 8 Ω , 1kHz, BW=60kHz, A_V = 2

Power Supply Rejection Ration(PSRR) vs Frequency

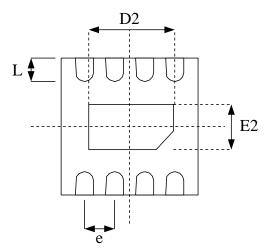
Vdd=2.6V,RL=8Ω -20 -40 Input Floating PSRR LEAVE(dB) Input 10Ω -90 FREQUENCY(Hz)

PSRR @ V_{DD} =2.6V, R_L = 8Ω , A_V = 2


Power Supply Rejection Ration(PSRR) vs Frequency



PSRR @ V_{DD} =2.6V, R_L = 8Ω , A_V = 2



(1)TDFN-8L(3*3mm)

TOP VIEW

BOTTOM VIEW

Symbol	Dimension in mm			
Sjineer	Min	Max		
А	0.70	0.80		
A1	0.00	0.05		
A3	0.2 REF.			
ь	0.18	0.30		
D	3.0 BSC			
Е	3.0 BSC			
е	0.65 BSC			
L	0.30	0.5		

Exposed pad

	Dimension in mm			
	Min	Max		
D2	1.95	2.05		
E2	1.6	1.75		

10/10