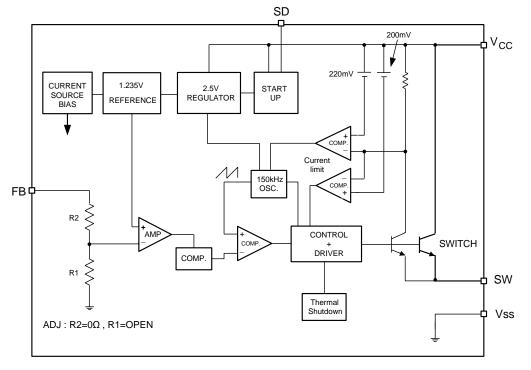
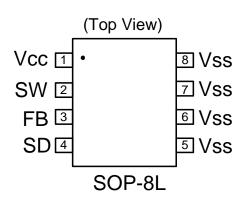
150KHz, 2A PWM Buck DC/DC Converter

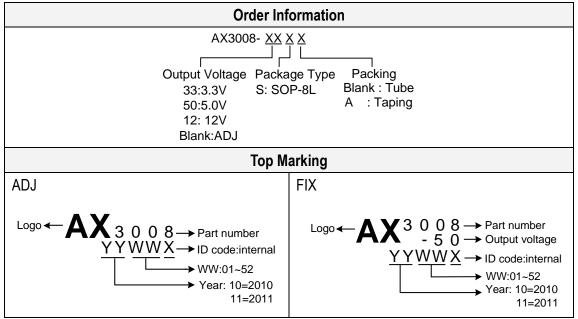

✤ GENERAL DESCRIPTION

The AX3008 series are monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurs and V_{FB} is down below 0.5V, the switching frequency will be reduced. The AX3008 series operates at a switching frequency of 150KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. The output version included fixed 3.3V, 5V, 12V, and an adjustable type. The chips are available in a standard SOP-8L package.

✤ FEATURES


- Output voltage: 3.3V, 5V, 12V and adjustable output version.
- Adjustable version output voltage range, 1.23V to 20V.
- 150KHz fixed switching frequency.
- Voltage mode non-synchronous PWM control.
- Thermal-shutdown and current-limit protection.
- ON/OFF shutdown control input.
- Short Circuit Protect (SCP).
- Operating voltage can be up to 30V.
- Output load current: 2A.
- SOP-8L Pb-Free package.
- Low power standby mode.
- Built-in switching transistor on chip.

BLOCK DIAGRAM


✤ PIN ASSIGNMENT

The package of AX3008 is SOP-8L. The pin assignment is given by:

Name	Description				
Vcc	Operating voltage input				
SW	Switching output				
FB	Output voltage feedback control				
SD	Power-off pin L : normal operation(Step-down) H : Step-down operation stopped (All circuits deactivated)				
Vss	GND pin				

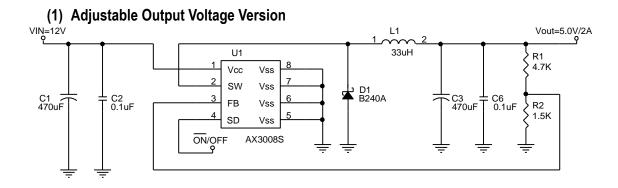
✤ ORDER/MARKING INFORMATION

✤ ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Maximum Supply Voltage	Vcc	+32	V
SD Pin Input Voltage	V_{SD}	-0.3 to V_{CC}	V
Feedback Pin Voltage	V_{FB}	-0.3 to 20	V
Output Voltage to Ground	Vout	-0.8	V
Power Dissipation Internally limited	PD	$(T_J-T_A) / \theta_{JA}$	W
Storage Temperature Range	T _{ST}	-65 to +150	°C
Operating Junction Temperature Range	TJ	-20 to +125	°C
Operating Supply Voltage	V _{OP}	+4.5 to +30	V
Output Current	I _{OUT}	2	А
Thermal Resistance from Junction to case	θ」	20	°C/W
Thermal Resistance from Junction to ambient	θ_{JA}	60	°C/W

Note: θ_{JA} is measured with the PCB copper area(need connect to V_{SS} pins) of approximately 1.5 in² (Multi-layer).

✤ ELECTRICAL CHARACTERISTICS


(Unless otherwise specified, $T_A=25$ °C, $V_{CC}=12V$ for 3.3V, 5V, adjustable version and $V_{CC}=18V$ for the 12V version. $I_{LOAD} = 0.2A$)

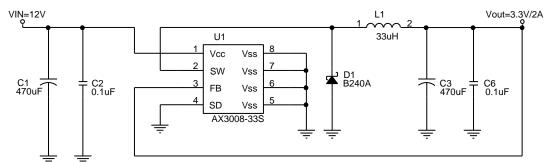
Characteristics	Symbo I	Conditions	Min	Тур	Max	Units	
Quiescent Current	lq	V _{FB} =12V force driver off	-	4	8	mA	
Feedback bias current	I _{FB}	V _{FB} =1.3V (Adjustable version only)		-10	-50	nA	
Shutdown supply Current	I _{SD}	SD pin=5V V _{CC} =30V	-	100	200	uA	
Oscillator frequency	Fosc		127	150	173	KHz	
Oscillator frequency of short	Ŀ	(Adjustable) When V _{FB} <0.5V	-	50	-	KHz	
circuit protect	F _{SCP}	(Fixed)When < V _{OUT} *40%	-	50	-	KHz	
Max. Duty Cycle (ON)	DC	V _{FB} =0V force driver on	-	100	-	0/	
Min. Duty Cycle (OFF)	DC	V _{FB} =12V force driver off	-	0	-	%	
Current limit	Icl	Pear current, No outside circuit V _{FB} =0V force driver on		-	-	А	
Saturation voltage	Vsat	I _{OUT} =2A, No outside circuit V _{FB} =0V force driver on		1.2	1.5	V	
SW pin leakage current SW pin=0V	1	No outside circuit V _{FB} =12V force driver off	-	-	-200	uA	
SW pin leakage current SW pin=-0.8V	I _{SWL}	V_{CC} =30V force driver off	-	-5	-	mA	
SD pin logic input threshold	VIL	Low (regulator ON)	-	1.3	0.6	V	
voltage	VIH	High (regulator OFF)	2.0	1.3	-	V	
SD pin logic input current	Ι _Η	V _{SD} =2.5V (OFF)	-	-0.1	-0.5	uA	
SD pin input current	١L	V _{SD} =0.5V (ON)	-	-	-0.01	uA	
Thermal shutdown Temp	T_{SD}		-	135	-	°C	

*	ELECTRICAL CHARACTERISTICS	(CONTINUED)
---	-----------------------------------	-------------

Version	Characteristics	Symbol	Conditions	Min	Тур	Max	Units
			I _{LOAD} =0.2A				
AX3008-ADJ	Output Feedback voltage	V_{FB}	V _{OUT} programmed	1.193	1.23	1.267	V
			for 3.3V				
	Efficiency	η	V_{CC} = 12V, I_{LOAD} =2A	-	80	-	%
AX3008-3.3V	Output voltage	V _{OUT}	I _{LOAD} =0.2A	3.20	3.30	3.40	V
	Efficiency	η	V _{CC} = 12V, I _{LOAD} =2A	-	81	-	%
AX3008-5.0V	Output voltage	Vout	I _{LOAD} =0.2A	4.85	5.00	5.15	V
	Efficiency	η	V _{CC} =12V, I _{LOAD} =2A	-	85	-	%
	Output voltage	Vout	I _{LOAD} =0.2A	11.64	12.0	12.36	V
AX3008-12V	Efficiency	η	V_{CC} =15V, I_{LOAD} = 2A	-	91	-	%

✤ APPLICATION CIRCUIT

$$V_{OUT} = V_{FB} \times (1 + \frac{R1}{R2}), V_{FB} = 1.23V, R2 = 0.47K \sim 2.6K$$


Table 1 Resistor select for output voltage setting

		3 0
V _{OUT}	R2	R1
5V	1.5K	4.7K
50	1.8K	5.6K
2.01/	1.5K	2.5K
3.3V	1.8K	3.0K
2.5V	1.8K	1.8K
1.8V	1.8K	0.82K
1.5V	1.8K	0.39K

Axelite Confidential Materials, do not copy or distribute without written consent.

AX3008 axelite 亞瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

(2) Fixed Output Voltage Version

✤ FUNCTION DESCRIPTION

Pin Functions

Vcc

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Vss

Circuit ground.

SW

Internal switch. The voltage at this pin switches between $(+V_{CC} - V_{SAT})$ and approximately – 0.5V, with a duty cycle of approximately V_{OUT} / V_{CC} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

Senses the regulated output voltage to complete the feedback loop.

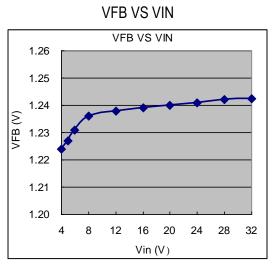
SD

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 100uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of V_{CC}) shuts the regulator down. If this shutdown feature is not needed, the SD pin can be wired to the ground pin.

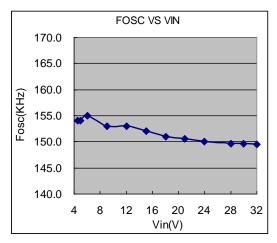
Thermal Considerations

The all package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The junction temperature rises above ambient temperature for a load and different input and output voltages.

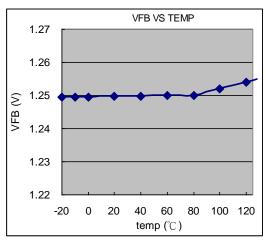
The data for these curves was taken with the operating as a buck-switching regulator in an ambient temperature of 25°C (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures require more heat sinker.

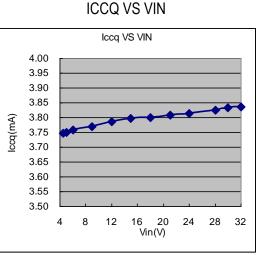

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper (need connect to the V_{SS} pins) should be used in the board layout, (One exception is the SW(switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

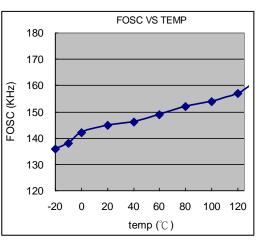

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

AX3008 axelite 亞瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

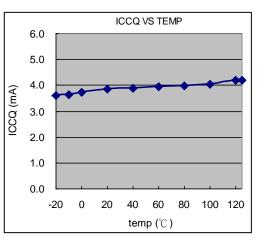

✤ TYPICAL CHARACTERISTICS



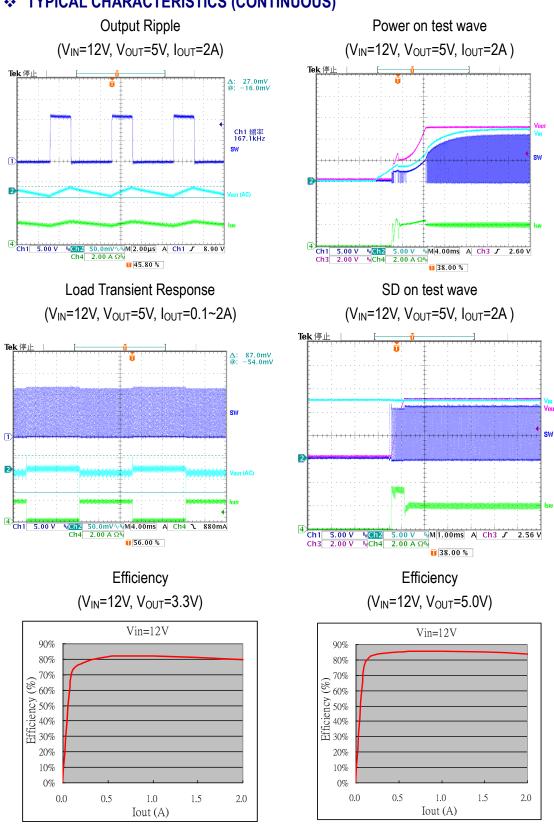
FOSC VS VIN



VFB VS TEMPERATURE

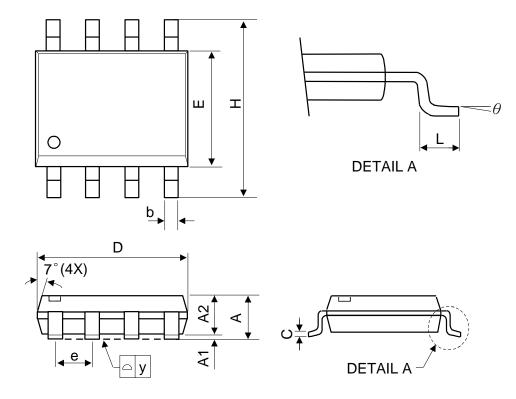


FOSC VS TEMPERATURE



ICCQ VS TEMPERATURE

8/10


Celite 亞瑟萊特科技股份有限公司 AXElite Technology

TYPICAL CHARACTERISTICS (CONTINUOUS) *

9/10

✤ PACKAGE OUTLINES

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	1.75	-	-	0.069
A1	0.1	-	0.25	0.04	-	0.1
A2	1.25	-	-	0.049	-	-
С	0.1	0.2	0.25	0.0075	0.008	0.01
D	4.7	4.9	5.1	0.185	0.193	0.2
E	3.7	3.9	4.1	0.146	0.154	0.161
Н	5.8	6	6.2	0.228	0.236	0.244
L	0.4	-	1.27	0.015	-	0.05
b	0.31	0.41	0.51	0.012	0.016	0.02
е	1.27 BSC			().050 BSC	
у	-	-	0.1	-	-	0.004
θ	0 0	-	8 0	0 0	-	8 0

Mold flash shall not exceed 0.25mm per side

JEDEC outline: MS-012 AA