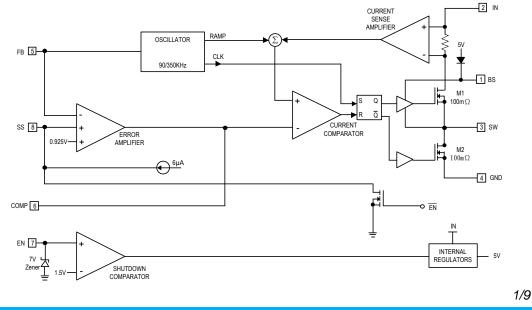
3A, 23V, 340kHz Synchronous Rectified

Step-Down Converter

♦ GENERAL DESCRIPTION

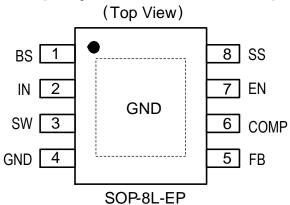
The AX3484 is a monolithic synchronous buck regulator. The device integrates two 100m Ω MOSFETs, and provides 3A of continuous load current over a wide input voltage of 4.75V to 23V. Current mode control provides fast transient response and Cycle-by-Cycle current limit.


An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to 1μ A.

This device, available in an 8-pin SOP with exposed pad package, provides a very compact solution with minimal external components.

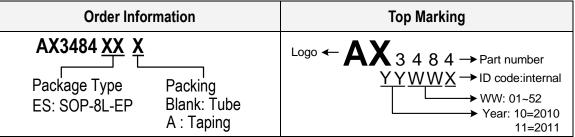
✤ FEATURES

- 3A Output Current
- Wide 4.75V to 23V Operating Input Range
- Integrated 100mΩ Power MOSFET Switches
- Output adjust from VFB to 20V
- Up to 95% Efficiency
- Programmable Soft-Start
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 350KHz Frequency
- Cycle-by-Cycle Over Current Protection
- Thermal shutdown and short circuit protections


BLOCK DIAGRAM

Axelite Confidential Materials, do not copy or distribute without written consent.

*** PIN ASSIGNMENT**


The package of AX3484 is SOP-8L-EP; the pin assignment is given by:

Name	Description
BS	High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 0.01µF or greater capacitor from SW to BS to power the high side switch.
IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75V to 23V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor.
sw	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.
GND	Ground.
FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.925V. See Setting the Output Voltage.
СОМР	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required. See Compensation Components.
EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100k\Omega$ resistor for automatic startup.
SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1μ F capacitor sets the soft-start period to 15ms. To disable the soft-start feature, leave SS unconnected.

2/9

*** ORDER/MARKING INFORMATION**

ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit
Input Voltage	V _{IN}	–0.3 to +24	V
Switch Node Voltage	V _{SW}	-1V to V_{IN} +0.3V	V
Boost Voltage		V_{SW} – 0.3 to VSW + 6	V
All Other Pins		–0.3 to +6	V
Lead Temperature		260	°C
Storage Temperature		–65 to +150	°C
Junction Temperature	TJ	150	°C
Output Voltage	V _{OUT}	0.925 to 20	V
Ambient Operating Temperature		-40 to +85	°C
Thermal Resistance from Junction to case	θ _{JC}	15	°C/W
Thermal Resistance from Junction to ambient	θ _{JA}	40	°C/W

Note: θ_{JA} is measured with the PCB copper area of approximately 1 in²(Multi-layer).

*** ELECTRICAL CHARACTERISTICS**

 $(V_{IN} = 12V, T_A = +25^{\circ}C, unless otherwise noted.)$

Symbol	Conditions	Min	Тур	Max	Units
V _{IN}		4.75	-	23	V
I _{SD}	V _{EN} = 0V	-	1	3.0	μA
V_{FB}	$4.75V \le V_{\rm IN} \le 23V$	0.900	0.925	0.950	۷
R _{DS(ON)1}		-	100	-	mΩ
R _{DS(ON)2}		-	100	-	mΩ
	V _{EN} = 0V, V _{SW} = 0V	-	-	10	μA
		3.8	-	-	А
Fosc1		280	350	430	KHz
Fosc ₂	V _{FB} = 0V	-	90	-	KHz
D _{MAX}	V _{FB} = 0.8V	-	90	-	%
ENH	V _{EN} Rising	1.1	1.5	2.0	V
		-	210	-	mV
I _{SS}	V _{SS} = 0V	-	6	-	μA
	C _{SS} = 0.1µF	-	15	-	ms
T _{SD}		-	160	-	°C
Т _{SH}		-	35	-	°C
	VIN ISD VFB RDS(ON)1 RDS(ON)2 FOSC1 FOSC2 DMAX ENH ISS ISS	V_{IN} I_{SD} $V_{EN} = 0V$ V_{FB} $4.75V \le V_{IN} \le 23V$ $R_{DS(ON)1}$ $R_{DS(ON)2}$ $R_{DS(ON)2}$ $V_{EN} = 0V, V_{SW} = 0V$ F_{OSC1} $V_{EN} = 0V, V_{SW} = 0V$ F_{OSC2} $V_{FB} = 0V$ D_{MAX} $V_{FB} = 0.8V$ ENH V_{EN} Rising I_{SS} $V_{SS} = 0V$ I_{SS} $V_{SS} = 0.1 \mu F$ T_{SD} V_{EN}	VIN 4.75 ISD $V_{EN} = 0V$ - V_{FB} $4.75V \le V_{IN} \le 23V$ 0.900 RDS(ON)1 - RDS(ON)2 - $V_{EN} = 0V, V_{SW} = 0V$ - $V_{EN} = 0V, V_{SW} = 0V$ - $V_{EN} = 0V, V_{SW} = 0V$ - $Posc1$ 280 $Fosc2$ $V_{FB} = 0.8V$ - D_{MAX} $V_{FB} = 0.8V$ - ENH V_{EN} Rising 1.1 Iss $V_{SS} = 0V$ - I_{SS} $V_{SS} = 0.1 \mu F$ - T_{SD} - -	VIN4.75-ISD $V_{EN} = 0V$ -1 V_{FB} $4.75V \le V_{IN} \le 23V$ 0.900 0.925 RDS(ON)1-100RDS(ON)2-100RDS(ON)2-100VEN = 0V, VSW = 0VVEN = 0V, VSW = 0VVEN = 0V, VSW = 0VVEN = 0V, VSW = 0VDMAXVFB = 0.8V-90DMAXVFB = 0.8V-90ENHVEN Rising1.11.5ISSVSS = 0V-6CSS = 0.1µF-15TSD-160	VIN 4.75 - 23 ISD VEN = 0V - 1 3.0 VFB 4.75V \leq VIN \leq 23V 0.900 0.925 0.950 RDS(ON)1 - 100 - RDS(ON)2 - 100 - VEN = 0V, VSW = 0V - 100 - VEN = 0V, VSW = 0V - 10 - FOSC1 280 350 430 FOSC2 VFB = 0.8V - 90 - DMAX VFB = 0.8V - 90 - ENH VEN Rising 1.1 1.5 2.0 ISS VSS = 0V - 6 - ISS VSS = 0V - 6 - TSD - 160 -

Note: Guaranteed by design.

*** APPLICATION CIRCUIT**

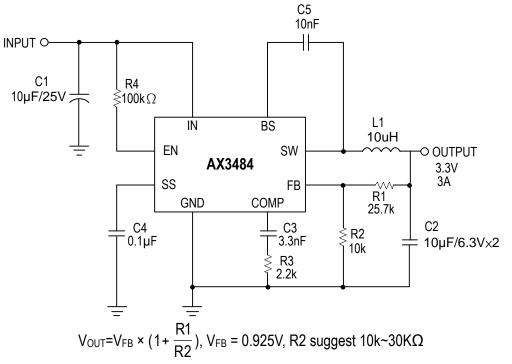


Table Recommended Component Selection

V _{IN} (V)	V _{OUT} (V)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	C3 (nF)	L1 (µH)	C _{OUT} (µF)
12	5	44.1	10	2.2	3.3	15	10 X 2
5 or 12	3.3	25.7	10	2.2	3.3	10	10 X 2
5 or 12	1.8	9.5	10	2.2	3.3	4.7	10 X 2
5 or 12	1.2	3	10	2.2	3.3	3.3	10 X 2
5 or 12	1	0.81	10	2.2	3.3	2.2	10 X 2

***** FUNCTION DESCRIPTIONS

The AX3484 is a synchronous rectified, current-mode, step-down regulator. It regulates input voltages from 4.75V to 23V down to an output voltage as low as 0.925V, and supplies up to 3A of load current.

The AX3484 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal Tran conductance error amplifier. The voltage at the COMP pin is compared to the switch current measured internally to control the output voltage.

The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS is needed to drive the high side gate. The boost capacitor is charged from the internal 5V rail when SW is low.

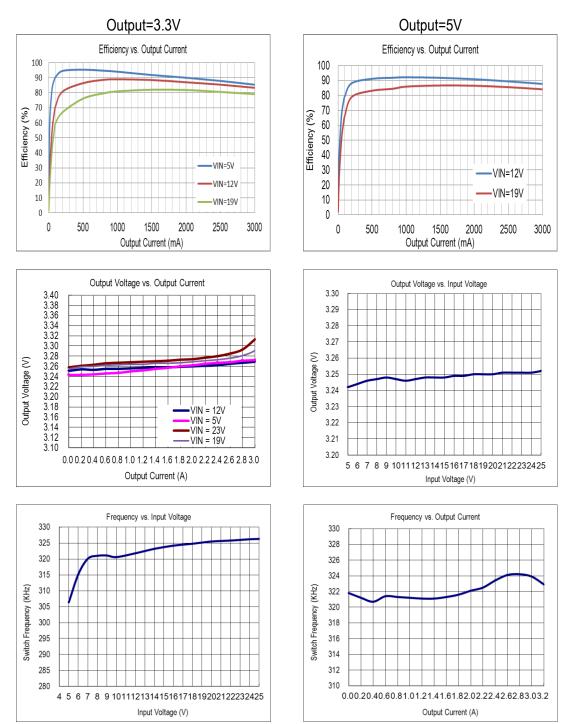
✤ APPLICATION INFORMATION COMPONENT SELECTION

Setting the Output Voltage

The output voltage is set using a resistive voltage divider from the output voltage to FB pin. The voltage divider divides the output voltage down to the feedback voltage by the ratio:

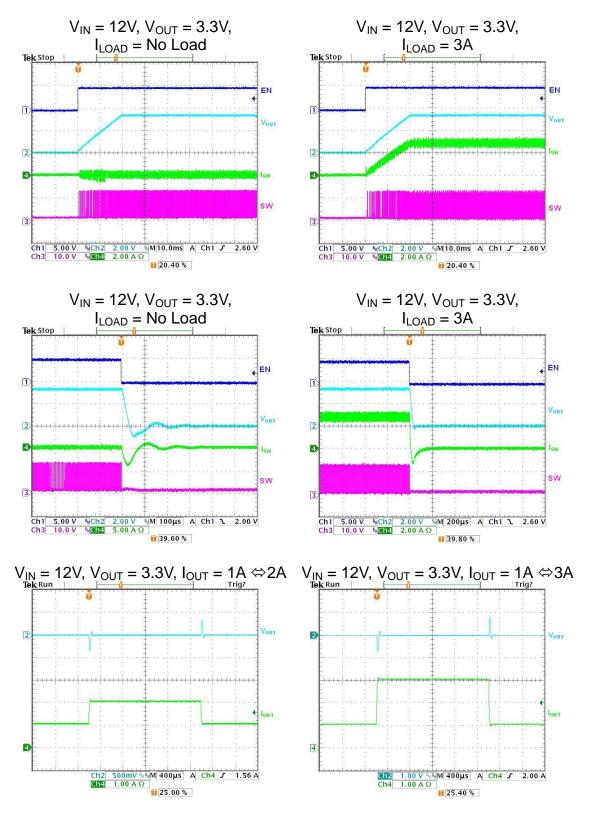
$$V_{FB} = V_{OUT} \times \frac{R2}{R1 + R2}$$

Where VFB is the feedback voltage and V_{OUT} is the output voltage. Thus the output voltage is:

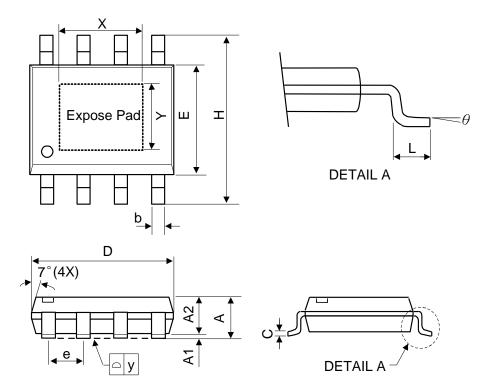

$$V_{OUT}=0.925 \times \frac{R1+R2}{R2}$$

R2 can be as high as $100k\Omega$, but a typical value is $10k\Omega$. Using the typical value for R2, R1 is determined by:

R1= 10.811 × (
$$V_{OUT} - 0.925$$
) (k Ω)


For example, for a 3.3V output voltage, R2 is $10k\Omega$, and R1 is $25.7k\Omega$.

*** TYPICAL CHARACTERISTICS**


Axelite Confidential Materials, do not copy or distribute without written consent.

*****TYPICAL CHARACTERISTICS (COUNTINOUS)

Axelite Confidential Materials, do not copy or distribute without written consent.

*** PACKAGE OUTLINES**

Symbol	Dimensions in Millimeters			Dimensions in Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.75	-	-	0.069	
A1	0	-	0.15	0	-	0.06	
A2	1.25	-	-	0.049	-	-	
С	0.1	0.2	0.25	0.0075	0.008	0.01	
D	4.7	4.9	5.1	0.185	0.193	0.2	
E	3.7	3.9	4.1	0.146	0.154	0.161	
Н	5.8	6	6.2	0.228	0.236	0.244	
L	0.4	-	1.27	0.015	-	0.05	
b	0.31	0.41	0.51	0.012	0.016	0.02	
е		1.27 BSC					
у	-	-	0.1	-	-	0.004	
Х	-	2.34	-	-	0.092	-	
Y	-	2.34	-	-	0.092	-	
θ	0 0	-	8 0	0 0	-	8 0	

Mold flash shall not exceed 0.25mm per side JEDEC outline: MS-012 BA