

GENERAL DESCRIPTION

PT2202 is a highly integrated current mode PWM controller, providing low standby power and cost effective system solution for the sub 30W flyback converter applications. PWM switching frequency at normal operation is externally programmable and trimmed to tight range. At no load or light load condition, the IC enters 'Green Mode' operation to minimize switching loss and low standby power and high efficiency is thus achieved. PT2202 also features low VDD startup current which also contributes to low standby power. The built in LEB on the current sense input removes the signal glitch due to snubber circuit diode reverse recovery and will greatly reduce the external component count and system cost in the design.

Rich protection is implemented in PT2202 including cycle-by-cycle current limiting (OCP), over load protection (OLP), VDD over voltage clamp and under voltage lockout (UVLO). Gate drive output is clamped at 18V to protect the power MOSFET. By limiting the minimum frequency above 22 kHz eliminates the potential audible noise when the system works under light or no load conditions.

Excellent EMI performance is achieved with C.R.PowTech proprietary frequency Jittering technique together with soft driving control at totem pole gate drive output.

The PT2202 is available in SOT23-6, SOP-8 and DIP-8 packages.

ORDERING INFORMATION

Current-mode PWM Controller

FEATURES

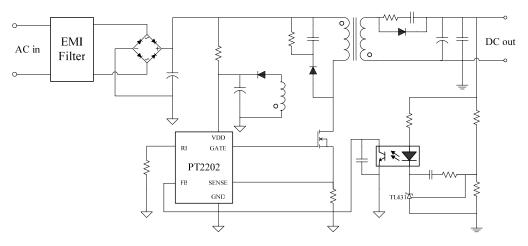
- Frequency Jittering for Improved EMI Performance
- Green-Mode PWM for Improved Efficiency and Minimum standby power design
- Low start up current 20uA (Typ. 3uA) and Low operation current 2mA (Typ. 1mA)
- Current mode operation
- Leading-edge blanking on current sense input
- Programmable PWM frequency
- Constant output power limit for universal AC input
- Built-in power limit control (OLP)
- Cycle-by-cycle current limiting (OCP)
- Under voltage lockout (UVLO)
- GATE output maximum voltage clamped at 18V
- Totem pole output includes soft driving for better EMI

APPLICATIONS

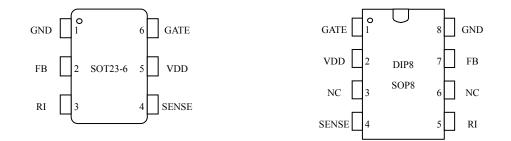
Offline AC/DC flyback converter for

- Power Adapter
- Open-frame SMPS
- Battery Charger Adapter

PACKAGE	TEMPERATURE RANGE	ORDERING PART NUMBER	TRANSPORT MEDIA	MARKING	
SOT23-6, Pb free	-40°C to 85°C	РТ2202Т	Tape and Reel	2202	
DIP8, Pb free	-40°C to 85°C	PT2202D	Tape and Reel	PT2202 xxxxX	
SOP8, Pb free	-40°C to 85°C	PT2202S	Tape and Reel	PT2202 xxxxXX	


Note:

xxxxXX Assembly Factory Code Lot Number



Current-mode PWM Controller

TYPICAL APPLICATIONS

PIN ASSIGNMENT

PIN DESCRIPTIONS

NAMES	PIN No. (SOT23-6)	PIN No. (SOP8, DIP8)	DESCRIPTION
GND	1	8	Ground
FB	2	7	Feedback input pin. PWM duty cycle is determined by voltage level into this pin and SENSE pin voltage level.
RI	3	5	Internal Oscillator frequency setting pin. A resistor connected between RI and GND sets the PWM frequency.
SENSE	4	4	Current sense input pin. Connected to MOSFET current sensing resistor node.
VDD	5	2	DC power supply pin.
GATE	6	1	Totem-pole gate drive output for power MOSFET.
		3, 7	No Connection

Current-mode PWM Controller

ABSOLUTE MAXIMUM RATINGS(note1)

SYM	PARAMETER	VALUE	UNIT
V _{DD}	V _{DD} DC Supply Voltage	30	V
V _{Clamp}	V _{DD} Clamp Voltage	33	V
I _{DD} -Clamp	V _{DD} DC Clamp Current	10	mA
V _{FB}	V _{FB} PIN Input Voltage	-0.3~7	V
V _{SENSE}	V _{SENSE} Input Voltage	-0.3~7	V
V _{RI}	V _{RI} Input Voltage	-0.3~7	V
TJ	Min/Max Operating Junction Temperature T _J	-20~150	°C
T _{STG}	Storage Temperature Range	-55~160	°C
HBM	ESD Capability, HBM model(note 2)	2.5	KV

PACKAGE DISSIPATION RATING

SYM	PARAMETER	VALUE	UNIT
	DIP8	90	°C/W
R_{\ThetaJA}	SOP8	150	°C/W
	SOT23-6	250	°C/W

OPERATING RANGE

SYM	PARAMETER	VALUE	UNIT
V _{DD}	V _{DD} Supply Voltage	10~30	V
RI	RI Resistor Value	100	Kohm
T _A	Operating Ambient Temperature	-20~85	°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Range indicates conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Range. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

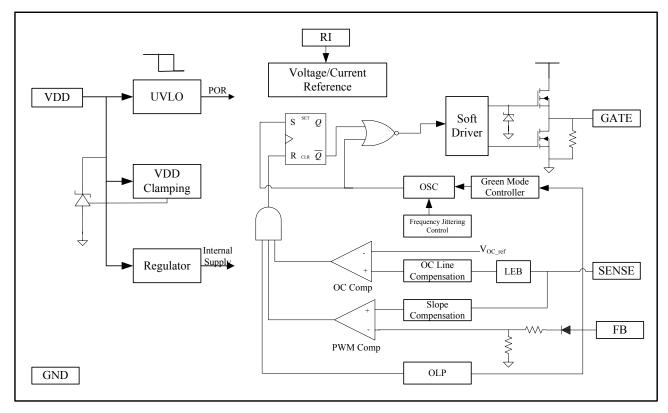
Note 2: Human body model, 100pF discharged through a $1.5k\Omega$ resistor.

ELECTRICAL CHARACTERISTICS

(T_{OPT}=25℃, Unless Otherwise Noted.)

SYMBOL	PARAMETERS	TEST CONDITIONS	MAX	ТҮР	MIN	UNIT	
Supply Voltage (V _{DD})							
I _{VDD_START}	V _{DD} Start up Current	V_{DD} =15V, RI=100Kohm Measure current into V_{DD}		3	20	uA	
I _{VDD_OPER}	V _{DD} Operation Current	V_{DD} =16V, RI=100Kohm V_{FB} =3V, Gate floating		1		mA	
UVLO (Enter)	V _{DD} Under Voltage Lockout Enter		10	11	12	V	
UVLO (Exit)	V _{DD} Under Voltage Lockout Exit (Startup)		15.5	16.5	17.5	V	
V _{DD} _Clamp	V _{DD} Zener Clamp Voltage	I(V _{DD})=10mA		33		V	

Current-mode PWM Controller


ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETERS	TEST CONDITIONS	MAX	ТҮР	MIN	UNIT
Feedback Inp	ut Section (FB Pin)					
A _{VCS}	PWM Input Gain	$\triangle V_{FB} / \triangle V_{CS}$		2.0		V/V
V _{FB} _Open	V _{FB} Open Voltage			4.8		V
I _{FB} _Short	FB pin Short Circuit Current	Short FB pin to GND, measure current		0.8		mA
V _{TH} _ZD	Zero Duty Cycle FB Threshold Voltage	V _{DD} =16V, RI=100Kohm			0.60	V
V _{TH} _BM	Burst Mode FB threshold voltage			1.6		V
V _{TH} PL	Power Limiting FB Threshold Voltage			3.7		V
V _D PL	Power Limiting Debounce Time	V _{DD} =16V, RI=100Kohm		32		ms
Z _{FB} _IN	Input Impedance			6.0		Kohm
DC_MAX	Maximum Duty Cycle	VDD=18V, RI=100Kohm, FB=3V, CS=0V		75		%
Current Sense	e Input (SENSE Pin)					
T_Blanking	Sense Input Leading Edge Blanking time	RI=100kohm		300		ns
Z _{SENSE} _IN	Sense Input Impedance			40		Kohm
T _D OC	Over Current Detection and Control Delay	V_{DD} =16V, FB=3.3V, CS> V_{TH} _OC		75		nS
V _{TH} _OC	Current Limiting Threshold Voltage at Zero Duty Cycle	FB=3.3V, RI=100Kohm	0.75	0.80	0.85	v
Oscillator			•	•	•	•
F _{osc}	Normal Oscillation Frequency	RI=100Kohm	60	65	70	kHz
$\triangle F_{temp}$	Frequency Temperature Stability	V _{DD} =16V, RI=100Kohm -20°C to 100°C		5		%
$\triangle F_V_{DD}$	Frequency Voltage Stability	V _{DD} =12-25V, RI=100Kohm		5		%
RI_range	Operating RI Range		50	100	150	Kohm
F_BM	Burst Mode Base Frequency	V _{DD} =16V, RI=100Kohm		22		kHz
Gage Drive O	utput					
V _{OL}	Output Low Level	V _{DD} =16V, Io=-20mA			0.8	V
V _{OH}	Output High Level	V _{DD} =16V, Io=20mA	10			V
V _G _Clamp	Output Clamp Voltage Level			18		v
T_r	Output Rising Time	V _{DD} =16V, CL=1nF		220		nS
T_f	Output Falling Time	V _{DD} =16V, CL=1nF		70		nS
Frequency Sh	_	Γ	1	1	r	1
$\triangle F_OSC$	Frequency Modulation Range/Base Frequency	RI=100Kohm	-3		3	%
F_Shuffling	Shuffling Frequency	RI=100Kohm		32		Hz

Current-mode PWM Controller

SIMPLIFIED BLOCK DIAGRAM

OPERATION DESCRIPTION

The PT2202 is a highly integrated current mode PWM controller IC optimized for low-power switching mode power supplies. The green mode control plus complete protection greatly helps the design of low power conservation and cost effective power supplier.

1. Startup Current

The typical target start up current of PT2202 is smaller than 5uA so that a high resistance, and low-wattage, start-up resistor can therefore be used. For an AC-DC adaptor with universal input range, a 2M, 0.25W startup resistor could be used together with a VDD capacitor to provide a fast startup and low power dissipation solution.

2. Operating Current

The operating current of PT2202 is low at 1mA. Good efficiency can be achieved with PT2202 low operating current plus green mode control.

3. Frequency Jittering for EMI Improvement

The frequency jittering (switching frequency modulation) is implemented in PT2202. The oscillation

frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore reduces system design challenge.

4. Green Mode Operation

At zero load or light load condition, majority of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy. PT2202 will automatically decrease switching frequency with light load condition where V_{FB} voltage drops below a predefined level. But minimum operating frequency will not below 20kHz so audible noise therefore be removed. At no load condition, the V_{FB} drops below the preset level typically 0.6v, the Gate drive output will be shunt down, device enters Burst

Operating mode.

5. Programmable Oscillator Frequency

A resistor connected between RI and GND sets the constant current source to charge/discharge the internal cap and thus the PWM oscillator frequency can be programmed by setting the value of this resistor. The nominal operating frequency is determined by following expression with RI in Kohm.

$$F_{OSC} = \frac{65000}{RI} (Khz)$$

6. Current Sensing and Leading Edge Blanking

Cycle-by-cycle current limiting is implemented in PT2202. The current flowing through the power switch is detected by an external sense resistor connected to the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to Snubber diode reverse recovery so that the external RC filtering on sense input is no longer required. PWM duty cycle is determined by the voltage at the current sense pin and the FB input voltage.

7. Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM, and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

8. Gate Drive

The output driver is a fast totem-pole type driver with non-overlapping driving to the top and bottom FET. The output driver is clamped by an internal 18V zener diode so that power MOSFET transistors can be

Current-mode PWM Controller

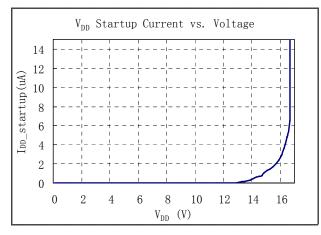
protected against undesirable gate over voltage. A soft driving is implemented to help minimizing EMI stemming from rapid voltage change on gate terminal.

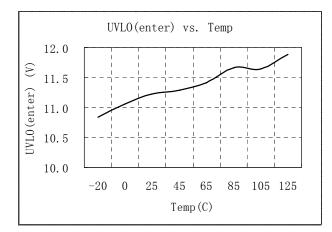
9. Overload Protection (OLP) and Under Voltage Lock Out (UVLO)

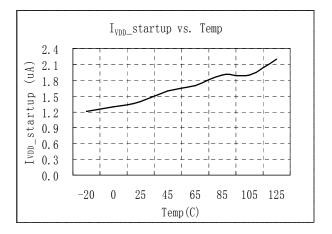
When the output of power supply is shorted or over loaded, the FB voltage will increase. If the FB voltage is higher than a threshold for a predefined period of time, the PWM output will then be turned off. VDD will then drops due to internal power consumption. When VDD drops below the UVLO turn-off threshold, the PT2202 will be totally shut down. When this happens, the start up sequence will kick in and VDD is charging up again. When VDD is charged to above the UVLO turn-on threshold, PT2202 is turned on again. This protection will take place repeatedly until the over loading condition is removed. This will prevent the power supply from being overheated under over loading condition.

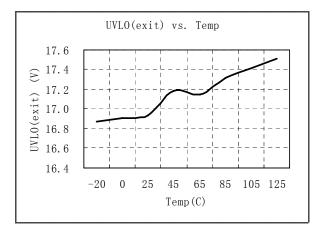
10. Constant Power Limit (CPP)

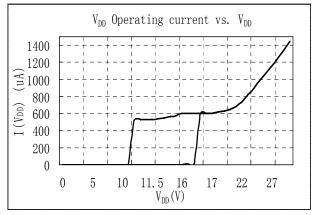
At each duty cycle, when the voltage of SENSE input reaches the OCP threshold level, PT2202 will turn off the Gate drive after a short delay time.

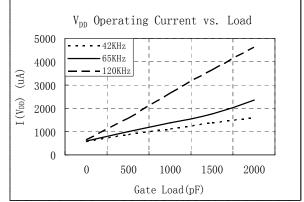

OCP threshold tracks PWM duty cycles and is line voltage compensated to achieve constant output power limit over the universal input voltage range of 90VAC to 264VAC with recommended reference design.

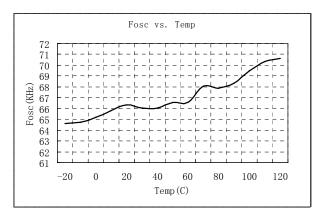


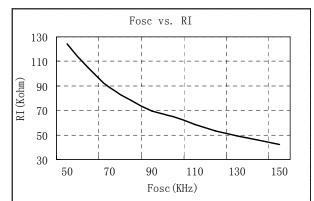

Current-mode PWM Controller

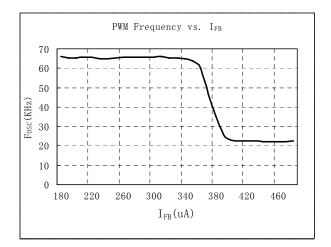

TYPICAL PERFORMANCE CHARACTERISTICS


 V_{DD} =16V, RI=100Kohm, T_A =25°C if not otherwise noted



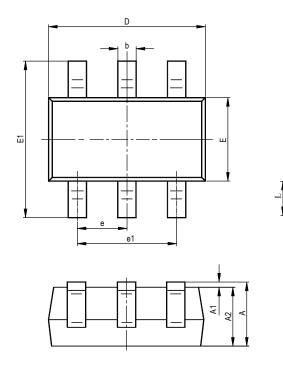


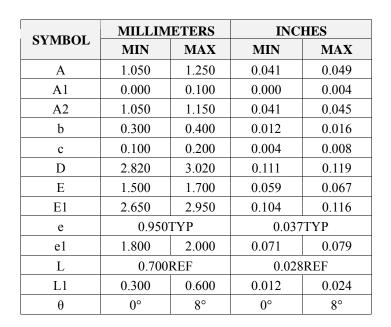




Current-mode PWM Controller

TYPICAL PERFORMANCE CHARACTERISTICS




Current-mode PWM Controller

0.2

PACKAGE INFORMATION

SOT23-6

