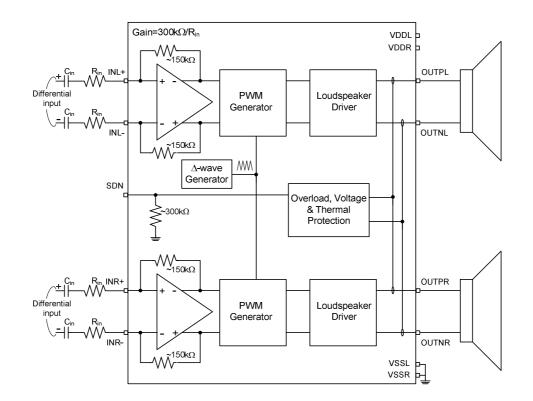


3W Stereo Filter-less Class-D Audio Amplifier

Features

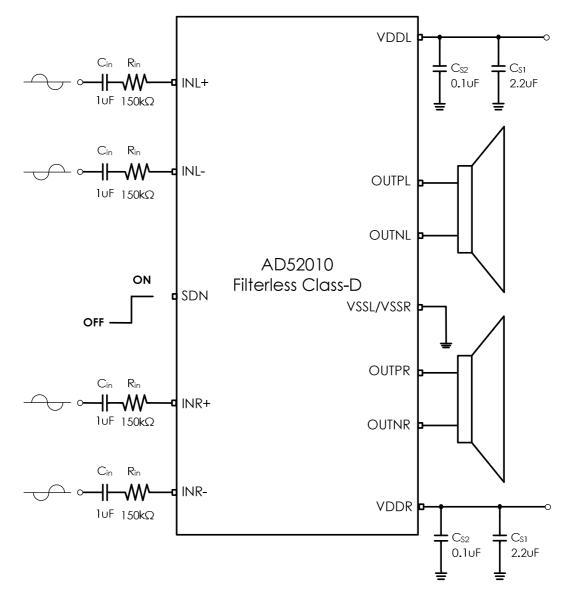
- Supply voltage range: 2.5 V to 5.5 V
- Support single-ended or differential analog input
- Low Quiescent Current
- Low Output Noise
- Low shut-down current
- Short power-on transient time
- Internal pull-low resistor on shut-down pins
- Short-circuit protection
- Over-temperature protection
- Loudspeaker power within 10% THD+N
 - **I**.78W/ch into 8Ω loudspeaker
 - >3W/ch into 4Ω loudspeaker
- Loudspeaker efficiency
 - 93% @ 8Ω, THD+N=10%
 - 85% @ 4Ω, THD+N=10%
- E-TSSOP-14L package
- Integrated Feedback Resistor of 300kΩ


Applications

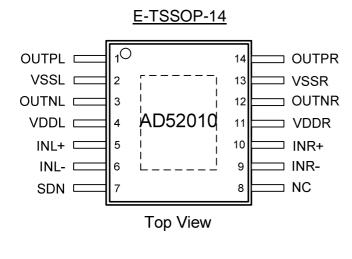
- Monitor audio
- PDA
- Portable multimedia devices
- Notebook computer
- Mobile phone

Description

The AD52010 is a 3.0W stereo, filter-less class-D audio amplifier. Operating with 5.0V loudspeaker driver supply, it can deliver 3.0W output power into 4 Ω loudspeaker within 10% THD+N or 2.6W at 1% THD+N.


The AD52010 is a stereo audio amplifier with high efficiency and suitable for the notebook computer, and portable multimedia device.

Functional Block Diagram


Typical Application Circuit

Note. Gain=2 V/V

Pin Assignments

Order information

AD52010-QG14NRT QG14 E-TSSOP-14 Package NRT RoHS & Halogen free Rating: -40 to 85℃ Packing in Tube 96 units / Tube 100 tubes/ small box AD52010-QG14NRR E-TSSOP-14 Package QG14 NRR RoHS & Halogen free Rating: -40 to 85℃ Packing in Tape & Reel 2.5K units/ Tape & Reel

Pin Description

NAME	PIN	ΙΟ ΤΥΡΕ	DESCRIPTION
	E-TSSOP-14	IOTIFL	DESCRIPTION
OUTPL	1	0	Positive output for left channel.
VSSL	2	G	Power ground for left channel.
OUTNL	3	0	Negative output for left channel.
VDDL	4	Р	Power supply for left channel.
INL+	5	_	Positive differential input for left channel.
INL-	6	-	Negative differential input for left channel.
SDN	7	_	Shutdown AD52010 (Low active logic).
NC	8	NC	No internal connected.
INR-	9	I	Negative differential input for right channel.
INR+	10	-	Positive differential input for right channel.
VDDR	11	Р	Power supply for right channel.
OUTNR	12	0	Negative output for right channel.
VSSR	13	G	Power ground for right channel.
OUTPR	14	0	Positive output for right channel.
Thermal	N/A	G	To connect the package exposed pad to PCB for thermal
pad	IN/A		power dissipation.

Available Package

Package Type	Device no.	heta _{JA} (°C/W)	Exposed Thermal Pad
E-TSSOP-14L	AD52010	38	Yes

Note. \varTheta_{ja} is measured at room temperature (T_A=25 $^\circ\!\mathrm{C}$), natural convection environment test board, which

is constructed with a thermal efficient, 4-layers PCB. The measurement is tested using the JEDEC51-5 thermal measurement standard.

Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver	-0.3	6.0	V
	Input pins voltage	-0.3	5.5	V
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction operating temperature	-40	150	°C

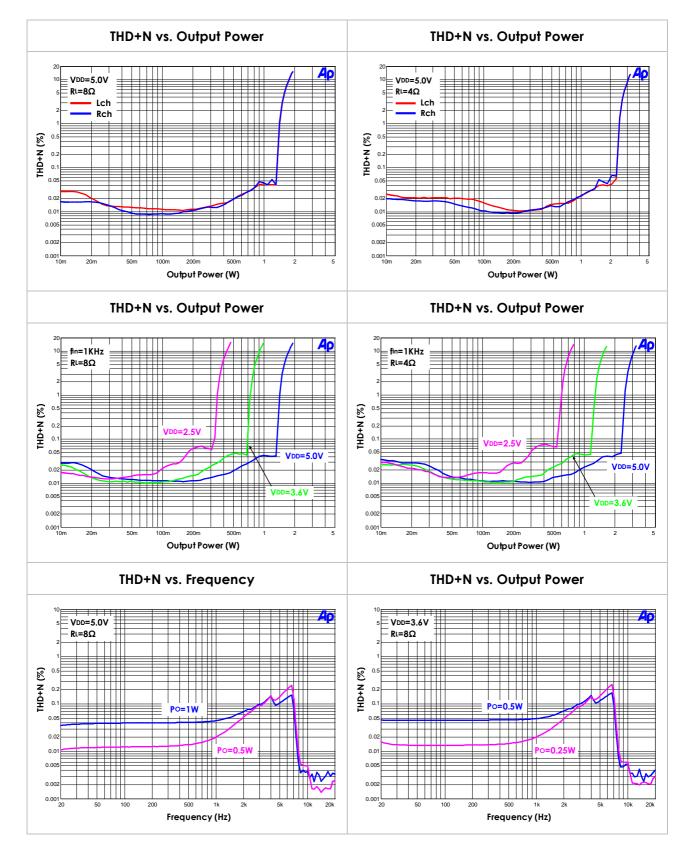
Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver	2.5	5.5	V
V _{IH}	High-Level Input Voltage	1.3	-	V
V _{IL}	Low-Level Input Voltage	-	0.35	V
TJ	Junction operating temperature	-40	125	°C
Та	Ambient Operating Temperature	-40	85	°C

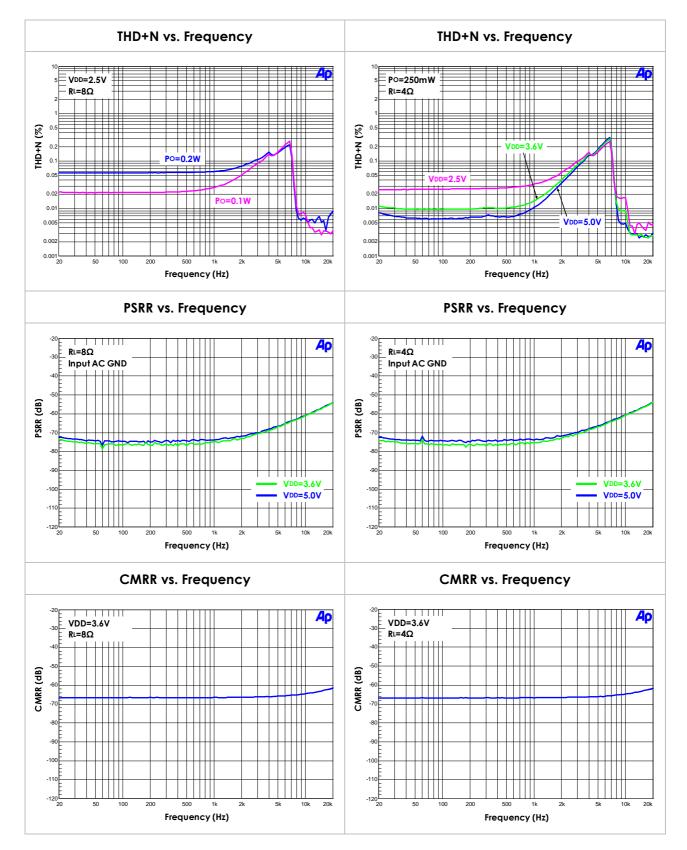
General Electrical Characteristics (T_A=25°C)

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
lq	Operating current	VDD=SDN=5V,		6		mA
ч	operating current	Output switching		0		ША
I _{PD}	Supply current during	VDD=5.5V;		<1		A
٩PD	power-down mode	SDN=0V		~ 1		μΑ
V _{offset}	Output offset voltage	Input ac grounded,		< 1	5	mV
¥ oπset	oulput onset voltage	VDD=2.5V ~ 5.5V		~ -	5	IIIV
Tsd	Junction temperature for			165		°C
100	driver shutdown			105		Ū
Thys	Temperature hysteresis for			20		°C
,	recovery from shutdown			20		
f _{sw}	Switching rate of		250	300	350	kHz
	loudspeakers driver		200			
Av	Gain		$270k\Omega$	<u>300kΩ</u>	$330k\Omega$	V/V
			$R_{_{in}}$	$R_{_{in}}$	$R_{_{in}}$	
Ton	Turn-on time	VDD = 3.6 V		1.7	4	msec
R _{sc}	Loudspeaker short-circuit detect resistance	VDD = 5.0 V		2.8	3.2	Ohm

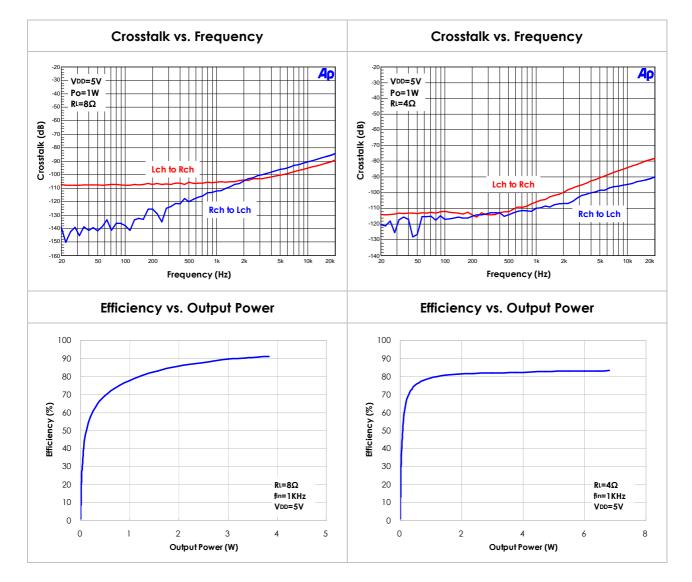
Electrical Characteristics and Specifications for Loudspeaker


• Gain= 2 V/V, Load=8 Ω , f_{in}=1 kHz, C_{S1}=2.2uF, C_{S2}=0.1uF, T_A=25 $^{\circ}$ C (unless otherwise noted)

SYMBOL	PARAMETER	CC	ONDITION	MIN	TYP	MAX	UNIT
		VDD=5.0V	THD+N = 10 %		1.7		W
		VDD=3.0V	THD+N = 1 %		1.4		W
Po	RMS Output Power	VDD=3.6V	THD+N = 10 %		0.90		W
гO		VDD-3.0V	THD+N = 1 %		0.73		W
		VDD=2.5V	THD+N = 10 %		0.43		W
		VDD=2.5V	THD+N = 1 %		0.35		W
	Total Harmonic Distortion	VDD=5.0V, Po=1.0W			0.04		%
THD+N	plus Noise	VDD=3.6V, Po=0.5W			0.04		%
		VDD=2.5V, Po=0.2W			0.05		%
SNR	Signal to Noise Ratio	VDD=5.0V, Po=1.0W			98		dB
X-talk	Channel Separation	P _O =1W, f _{IN} =1kHz			>90		dB
	Power Supply Rejection	VDD=3.6V, V _{ri}					
PSRR	Ratio	Inputs ac grounded with Ci=2µF			74		dB
	Italio	f=217 Hz					
CMRR	Common-Mode Rejection	VDD=3.6V, V _{IC} =1Vpp, f=217Hz			66		dB
Vn	Output integrated noise	noise VDD=3.6V			23		
v _n	(A-weighted)	f _{in} =20Hz ~ 20kHz			23		μV
η	Efficiency	VDD=5V, TH	D+N=10%		90		%


•	Gain= 2 V/V, Load=4 Ω , f _{in} =1 kHz, C _{S1} =2.2uF, C _{S2} =0.1uF, T _A =25 $^{\circ}$ C	(unless otherwise noted)
---	--	--------------------------

SYMBOL	PARAMETER	CON	NDITION	MIN	TYP	MAX	UNIT
		VDD=5.0V	THD+N = 10 %		3.0		W
		VDD=5.0V	THD+N = 1 %		2.4		W
Б	PMS Output Dowor	VDD=3.6V	THD+N = 10 %		1.5		W
Po	RMS Output Power	VDD=3.6V	THD+N = 1 %		1.3		W
		VDD=2.5V	THD+N = 10 %		0.72		W
		VDD=2.5V	THD+N = 1 %		0.58		W
			VDD=5.0V, Po=2.0W		0.04		%
THD+N	Total Harmonic Distortion plus Noise	VDD=3.6V, Po=1.0W			0.04		%
		VDD=2.5V, Po=0.5W			0.08		%
SNR	Signal to Noise Ratio	VDD=5.0V, Po=1.8W			98		dB
X-talk	Channel Separation	P _O =1W, f _{IN} =1kHz			>90		dB
	Dower Supply Rejection	VDD=3.6V, V _{ripple} =200mVpp					
PSRR	Power Supply Rejection Ratio	Inputs ac grounded with Ci=2µF		77	77		dB
	Nalio	f=217 Hz					
CMRR	Common-Mode Rejection	VDD=3.6V, V _{IC} =1Vpp, f=217Hz			66		dB
V _n	Output integrated noise	VDD=3.6V			22		
v _n	(A-weighted)	f _{in} =20Hz ~ 20kHz			22		μV
η	Efficiency	VDD=5.0V, TH	D+N=10%		82		%


Typical Characteristics (Gain= 2 V/V, unless otherwise noted)

Typical Characteristics (Gain= 2 V/V, unless otherwise noted)

Typical Characteristics (Gain= 2 V/V, unless otherwise noted)

Operation Descriptions

- Self-protection circuits (Typical values are used below.)
 - AD52010 has built-in over-temperature, overload and under-voltage detectors.
 - (i) If the internal junction temperature is higher than 165°C, the outputs of loudspeaker drivers will be disabled and connected to ground and the temperature hysteresis for AD52010 to return to normal operation is about 20°C. The variation of protected temperature is around 10%.
 - (ii) To protect loudspeaker drivers from current damage when the wires connected to loudspeakers are shorted to one another or shorted to GND, circuits for the detection of output loading are built in the AD52010. For normal operation, loudspeaker resistance is larger than 3.2Ω is required. Otherwise, overload detectors may activate. Once overload detector is active, loudspeaker drivers will be disabled and at low state. AD52010 will be recovery from overload fault by pulling SD# down to low and back to high after removing the short. Once the lines connected to loudspeakers are shorted to VDD, AD52010 will be burnt.
 - (iii) When the VDD voltage is lower than 2.3V, AD52010 will disable and loudspeaker drivers are at low state, cease AD52010 beside voltage detector circuit. When VDD becomes larger than 2.4V, AD52010 will return to normal operation.
- Anti-pop design

AD52010 is with anti-pop design. Annoying pop sounds during initial power on and power down/up are suppressed. When one of the operations mentioned above is applied, AD52010 will internally generate appropriate control signals to suppress pop sounds.

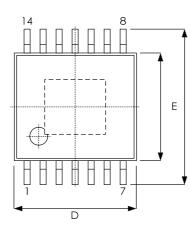
Application Circuit Information

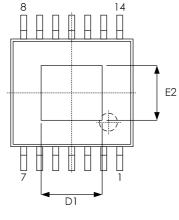
- Input resistors (R_{in}) and input capacitors (C_{in})
 - The total gain of the audio amplifier (AD52010) is set by input resistor (R_{in}) according to the following equation (a). The performance at low frequency (bass) is affected by the corner frequency (f_c) of the high-pass filter composed of input resistors (R_{in}) and input capacitors (C_{in}), determined in equation (b).

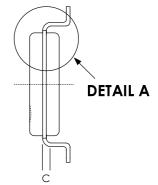

$$Gain = \frac{300k\Omega}{R_{in}} \left(V_V \right) \dots \dots \dots (a)$$

$$f_c = \frac{1}{2\pi R_{in}C_{in}} (Hz) \quad \dots \dots (b)$$

For differential audio signal application, the input capacitors (C_{in}), for DC decoupling, are not required. When single-ended audio source is used, the input capacitors (C_{in}) are required.

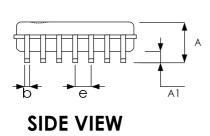

• Suggested application circuit for single-ended input

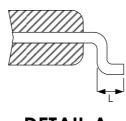




Package Outline Dimensions

• E-TSSOP-14L





TOP VIEW

BOTTOM VIEW

DETAIL A

Symbol	Dimension in mm			
Symbol	Min	Max		
А		1.20		
A1	0.05	0.15		
b	0.19	0.30		
D	4.90	5.10		
E	4.30	4.50		
E1	6.40 BSC			
е	0.65 BSC			
L	0.5	0.75		

E	1
Exposed	pau

	Dimension in mm		
	Min Max		
D1	1.92	2.54	
E2	1.67	2.29	

Revision History

Revision	Date	Description
0.1	2014.07	Preliminary version.
0.2	2014.12	Add Tape and Reel order information

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.