

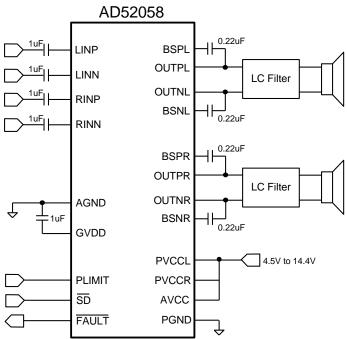
2x15W Stereo Class-D Audio Amplifier with Power Limit

Features

- Single supply voltage 4.5V ~ 14.4V for loudspeaker driver Built-in LDO output 5.5V for others
- Loudspeaker power from 12V supply BTL Mode: 8W/CH into $8\Omega @1\%$ THD+N BTL Mode: 10W/CH into $6\Omega @<1\%$ THD+N BTL Mode: 12W/CH into $4\Omega @<1\%$ THD+N PBTL Mode: 16W/CH into $4\Omega @1\%$ THD+N
- Loudspeaker power from 12V supply BTL Mode: 10W/CH into $8\Omega @10\%$ THD+N BTL Mode: 13W/CH into $6\Omega @10\%$ THD+N BTL Mode: 15W/CH into $4\Omega@10\%$ THD+N PBTL Mode: 20W/CH into $4\Omega @10\%$ THD+N
- 93% efficient Class-D operation eliminates need for heat sink
- Differential inputs
- Internal oscillator
- Short-Circuit protection with auto recovery option
- Under-Voltage detection
- Over-Voltage protection
- Pop noise and click noise reduction
- Adjustable power limit function for speaker protection
- Output DC detection for speaker protection
- Filter-Free operation
- Over temperature protection with auto recovery

• Superior EMC performance

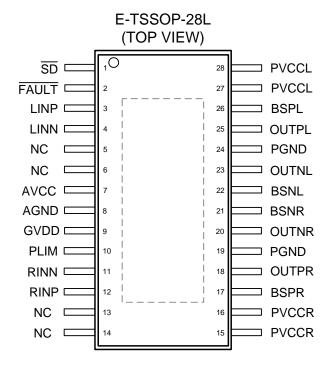
Applications


- TV audio
- Boom-Box
- Powered speaker
- Monitors
- Consumer Audio Equipment

Description

The AD52058 is a high efficiency stereo class-D audio amplifier with adjustable power limit function. The loudspeaker driver operates from 4.5V~14.4V supply voltage. It can deliver 15W/CH output power into 4Ω loudspeaker within 10% THD+N at 12V supply voltage and without external heat sink when playing music.

The adjustable power limit function allows user to set a voltage rail lower than half of 5.5V to limit the amount of current through the speaker.


Output DC detection prevents speaker damage from long-time current stress. AD52058 provides superior EMC performance for filter-free application. The output short circuit and over temperature protection include auto-recovery feature.

Simplified Application Circuit

Pin Assignments

Pin Description

NAME	E-TSSOP -28L	ТҮР	DESCRIPTION		
	1	I	Shutdown signal for IC (low = disabled, high = operational). Voltage		
SD			compliance to AVCC.		
FAULT	2	0	Open drain output used to display short circuit or dc detect fault. Voltage		
			compliant to AVCC. Short circuit faults can be set to auto-recovery by		
			connecting FAULTB pin to $\overline{\mathrm{SD}}$ pin. Otherwise, both short circuit faults and		
			dc detect faults must be reset by cycling AVCC.		
LINP	3	I	Positive audio input for left channel.		
LINN	4	I	Negative audio input for left channel.		
NC	5	NA	NC pin		
NC	6	NA	NC pin		
AVCC	7	Р	Analog supply.		
AGND	8	Р	Analog signal ground. Connect to the thermal pad.		
GVDD	9	0	5.5V regulated output, also used as supply for PLIMIT function.		
			Power limit level adjustment. Connect a resistor divider from GVDD to GND		
PLIMIT	10	I	to set power limit. Give V(PLIMIT) <2.4V to set power limit level. Connect to		
			GVDD (>2.4V) or GND to disable power limit function.		
RINN	11	I	Negative audio input for right channel.		
RINP	12	I	Positive audio input for right channel.		
NC	13	NA	NC pin		

Elite Semiconductor Microelectronics Technology Inc.

Publication Date : Dec. 2020 Revision: 1.3 2/20

NC	14	NA	NC pin			
PVCCR	15,16	Ρ	High-voltage power supply for right-channel. Right channel and left channel			
			power supply inputs are connect internal.			
BSPR	17	I	Bootstrap I/O for right channel, positive high side FET.			
OUTPR	18	0	Class-D H-bridge positive output for right channel.			
PGND	19	Р	Power ground for the H-bridges.			
OUTNR	20	0	Class-D H-bridge negative output for right channel.			
BSNR	21	I	Bootstrap I/O for right channel, negative high side FET.			
BSNL	22	I	Bootstrap I/O for left channel, negative high side FET.			
OUTNL	23	0	Class-D H-bridge negative output for left channel.			
PGND	24	Р	Power ground for the H-bridges.			
OUTPL	25	0	Class-D H-bridge positive output for left channel.			
BSPL	26	I	Bootstrap I/O for left channel, positive high side FET.			
PVCCL	27,28	Р	High-voltage power supply for right-channel. Right channel and left channel			
			power supply inputs are connect internal.			
Thermal Pad		Р	Must be soldered to PCB's ground plane.			

Ordering Information

Product ID	Package	Packing / MPQ	Comments
AD52058-26QG28NRR	E-TSSOP 28L	2500 Units / Reel 1reel/small box	Green

Available Package

Package Type	Device No.	θ _{JA} (℃/W)	θ _{JT} (°C/W)	Ψ _{JT} (°C/W)	Exposed Thermal Pad
E-TSSOP 28L	AD52058	28	27.1	1.33	Yes (Note 1)

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is necessary.
- Note 1.2: θ_{JA} is simulated on a room temperature ($T_A=25 C$), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is simulated using the JEDEC51-5 thermal measurement standard.
- Note 1.3: θ_{JT} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.
- Note 1.4: Ψ_{JT} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-5.