2x25W Stereo / 1x 50W Mono Digital Audio Amplifier With 20 bands EQ Functions, DRC and 2.1CH Mode

Features

- 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting)
 Loudspeaker: 98dB (PSNR), 108dB (DR) @24V
- Multiple sampling frequencies (Fs)
 32kHz / 44.1kHz / 48kHz and
 64kHz / 88.2kHz / 96kHz and
 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz 64x~512x Fs for 64kHz / 88.2kHz / 96kHz 64x~256x Fs for 128kHz / 176.4kHz / 192kHz
- Supply voltage
 3.3V for digital circuit
 10V~26V for loudspeaker driver
- Supports 2.0CH/2.1CH/Mono configuration
- Loudspeaker output power@24V for stereo 10W x 2CH into 8Ω @0.09% THD+N 15W x 2CH into 8Ω @0.15% THD+N 25W x 2CH into 8Ω @0.28% THD+N
- Sound processing including:
 20 bands parametric speaker EQ
 Volume control (+24dB~-103dB, 0.125dB/step)
 Dynamic range control
 Dual Band Dynamic range control
 Power Clipping
 3D surround sound
 Channel mixing
 Noise gate with hysteresis window
 Bass/Treble tone control
 Bass management crossover filter
- Anti-pop design
- Short circuit and over-temperature protection
- Supports I²C control without MCLK

DC-blocking high-pass filter

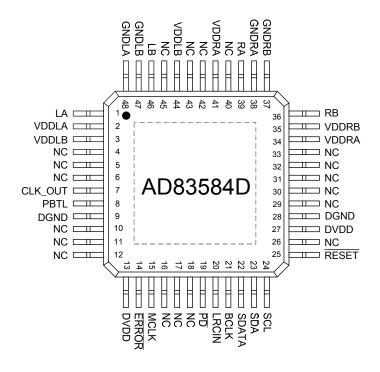
- I²C control interface with selectable device address
- Support BCLK system

- Support hardware and software reset
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Power saving mode

Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

Description


AD83584D is a digital audio amplifier capable of driving 25W (BTL) each to a pair of 8Ω load speaker and 50W (PBTL) to a 4Ω load speaker operating at 24V supply without external heat-sink or fan requirement with play music. AD83584D is also capable of driving 4Ω , 12W (SE)x2 + 8Ω , 25W (BTL)x1 at 24V supply for 2.1CH application.

AD83584D can provide advanced audio processing functions, such as volume control, 20 EQ bands, audio mixing, 3D surround sound and Dynamic Range Control (DRC). These are fully programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD83584D from damage due to accidental erroneous operating condition. The full digital circuit design of AD83584D is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog class-AB or class-D audio amplifier counterpart implemented by analog circuit design. AD83584D is pop free during instantaneous power on/off or mute/shut down switching because of its robust built-in anti-pop circuit.

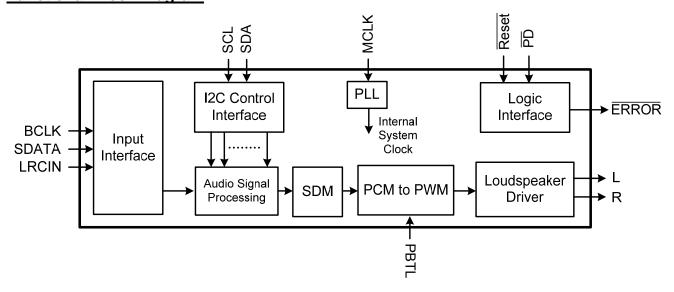
> Publication Date: Feb. 2015 Revision: 1.0 1/58

Pin Assignment

Pin Description

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	LA	0	Left channel output A	
2	VDDLA	Р	Left channel supply A	
3	VDDLB	Р	Left channel supply B	
4	NC		Not connected	
5	NC		Not connected	
6	NC		Not connected	
7	CLK_OUT	I/O	PLL ratio setting pin during power up, this pin is monitored on the rising edge of reset. PMF register will be default set at 1 or 4 times PLL ratio. Low: PMF [3:0]=[0000], 1 time of PLL ratio to avoid system MCLK over flow. High: PMF [3:0]=[0100], 4 times of PLL ratio. This pin could be clock output pin also during normal operating if EN_CLK_OUT register bit is enabled.	TTL output buffer, internal pull Low with a 80Kohm resistor.
8	PBTL	I	Stereo/Mono configuration pin (Low: Stereo ; High: Mono)	
9	DGND	Р	Digital Ground	

Publication Date: Feb. 2015 Revision: 1.0 2/58


10	NC		Not connected	
11	NC NC		Not connected	
12	NC DVDD		Not connected	
13	DVDD	Р	Digital Power	
			ERROR pin is a dual function pin. One is	
			I ² C address setting during power up.	edge of reset. A value of Low
14	ERROR	0	The other one is error status report (low	,
			active), It sets by register of	device address to 0x30 and a value
			A_SEL_FAULT at address 0x13 B[6] to	of High (15-kΩ pull up) sets it to
			enable it.	0x31.
				Schmitt trigger TTL input buffer,
15	MCLK	I	Master clock input	internal pull Low with a 80Kohm
				resistor.
16	NC		Not connected	
17	NC		Not connected	
18	NC		Not connected	
				Schmitt trigger TTL input buffer,
19	PD	I	Power down, low active	internal pull High with a 330Kohm
				resistor.
				Schmitt trigger TTL input buffer,
20	LRCIN	I	 Left/Right clock input (Fs)	internal pull Low with a 80Kohm
				resistor.
				Schmitt trigger TTL input buffer,
21	BCLK	ı	Bit clock input (64Fs)	internal pull Low with a 80Kohm
				resistor.
22	SDATA	ı	Serial audio data input	Schmitt trigger TTL input buffer
23	SDA	I/O	I ² C bi-directional serial data	Schmitt trigger TTL input buffer
24	SCL		I ² C serial clock input	Schmitt trigger TTL input buffer
		•	l o della dicek inpat	Schmitt trigger TTL input buffer,
25	RESET	ı	Reset, low active	internal pull High with a 330Kohm
25	RESET	ı	Reset, low active	
26	NC		Not sonnacted	resistor.
26	NC		Not connected	
27	DVDD	P	Digital Power	
28	DGND	Р	Digital Ground	
29	NC		Not connected	
30	NC		Not connected	
31	NC		Not connected	

Publication Date: Feb. 2015 Revision: 1.0 3/58

32	NC		Not connected	
33	NC		Not connected	
34	VDDRA	Р	Right channel supply A	
35	VDDRB	Р	Right channel supply B	
36	RB	0	Right channel output B	
37	GNDRB	Р	Right channel ground B	
38	GNDRA	Р	Right channel ground A	
39	RA	0	Right channel output A	
40	NC		Not connected	
41	VDDRA	Р	Right channel supply A	
42	NC		Not connected	
43	NC		Not connected	
44	VDDLB	Р	Left channel supply B	
45	NC		Not connected	
46	LB	0	Left channel output B	
47	GNDLB	Р	Left channel ground B	
48	GNDLA	Р	Left channel ground A	

Functional Block Diagram

