

3W/CH Stereo Filterless Class-D Audio Amplifier with 64-Step DC Volume Control, AGC and Headphone Output

DESCRIPTION

The EUA2035 is a high efficiency, 2 channel bridged-tied load (BTL), class-D audio power amplifier with headphone output. Operating from a 5V power supply, EUA2035 is capable of delivering 3W/ channel of continuous output power to a 4 Ω load with 10% THD+N. The EUA2035 features an advanced 64-step DC volume control which offers a range of speaker gain from -70dB to 25dB and a range of HP gain from -95dB to 3.5dB. The AGC detects output signal clip due to the over level input signal and suppresses it automatically. Moreover the AGC can adapt the output clip caused by power supply voltage down with battery. The new filterless architecture allows the device to drive the speaker directly, without low-pass output filters, which will save system cost and PCB area.

The EUA2035 also features short-circuit and thermal protection preventing the device from being damaged during a fault condition. The EUA2035 is available in 24-pin SSOP package.

FEATURES

- Wide Supply Voltage: 2.7V to 5.5V
- Unique Modulation Scheme Reduces EMI Emission
- 3W/ch into an 4 Ω Load From 5V Supply
- Efficient, Class-D Operation Eliminates Heatsinks
- 64-Step DC Volume Control
- Headphone Output Function
- Auto Gain Control
- Thermal and Short-Circuit Protection
- Integrated Click and Pop Suppression
- 24-pin SSOP Package
- RoHS Compliant and 100% Lead(Pb)-Free Halogen-Free

APPLICATIONS

- LCD Monitors/TVs
- All-in-One PCs
- Portable Audio
- Notebook PC

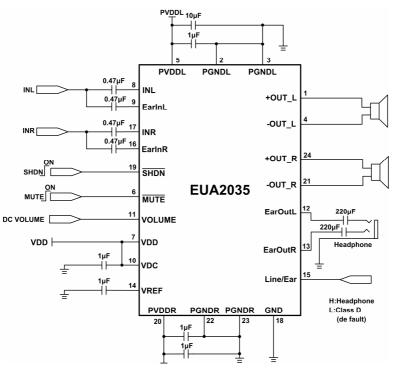


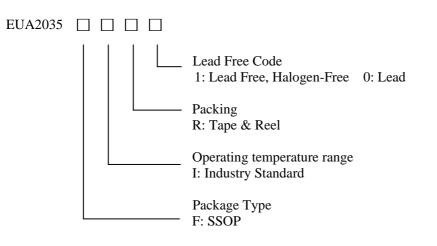
Figure1.

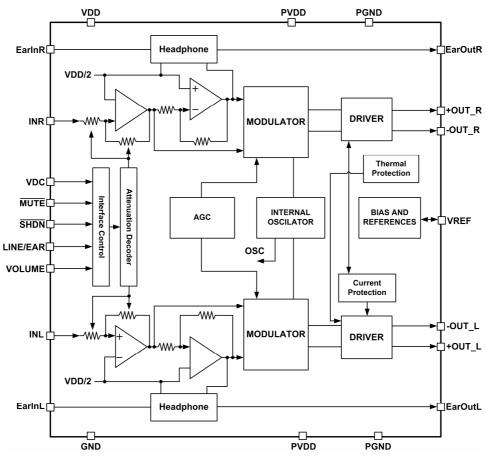
Typical Application Circuit

Pin Configurations

Package Type	Pin Configurations							
		(TOP VIEW)						
	+OUT_L 1	• 24 +	OUT_R					
	PGNDL 2	23 P	PGNDR					
	PGNDL 3	22 P	PGNDR					
	-OUT_L 4	21 -	OUT_R					
	PVDDL 5	20 P	VDDR					
SSOP-24		19 s	HDN					
5501 21		18 0	SND					
	INL 8	17	NR					
	EarinL 9	16 E	arinR					
	VDC 10	15 L	INE/EAR					
	VOLUME 11	14 V	/REF					
	EarOutL 12	13 E	arOutR					

Pin Description


PIN	SSOP-24	DESCRIPTION	
+OUT_L	1	Left Channel Positive Output	
PGNDL	2,3	Left Channel Power GND	
-OUT_L	4	Left Channel Negative Output	
PVDDL	5	Left Channel Power GND	
MUTE	6	Mute Control Input	
VDD	7	Analog VDD	
INL	8	Left Channel Input	
EarInL	9	Left Earphone Input	
VDC	10	Analog reference for gain control section	
VOLUME	11	DC volume control to set the gain of Class-D	
EarOutL	12	Left Earphone Output	
EarOutR	13	Right Earphone Output	
VREF	14	Internal analog reference, connect a bypass capacitor from VREF to GND	
LINE/EAR	15	Line/Earphone detect	
EarInR	16	Right Earphone Input	
INR	17	Right Channel Input	
GND	18	Analog GND	
SHDN	19	Shutdown Control Input	
PVDDR	20	Right Channel Power Supply	
-OUT_R	21	Right Channel Negative Output	
PGNDR	22,23	Right Channel Power GND	
+OUT_R	24	Right Channel Positive Output	



Ordering Information

Order Number	Package Type	Marking	Operating Temperature Range
EUA2035FIR1	SSOP-24	UA2035	-40 °C to +85°C

Block Diagram

Absolute Maximum Ratings (1)

• Supply Voltage	6V
\bullet Input Voltage	+0.3V
• Junction Temperature, T_J	125°C
• Storage Temperature Rang, T_{stg}	150°C
ESD Susceptibility	2kV
• Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Thermal Resistance	
θ _{JA} (SSOP-24) 99	0°C/W

Recommended Operating Conditions (2)

	Min.	Max.	Unit
Supply voltage	2.7	5.5	V
Operating free-air temperature, T _A	-40	85	°C

Note (1): *Stress beyond those listed under "Absolute Maximum Ratings" may damage the device. Note* (2): *The device is not guaranteed to function outside the recommended operating conditions.*

Electrical Characteristics

 V_{DD} =5V, Gain=Maximum, R_L =8 Ω , T_A = +25°C (Unless otherwise noted)

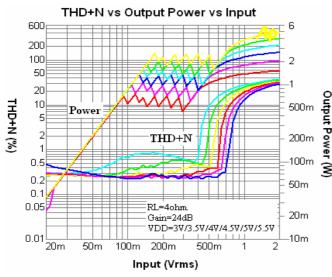
a								
Symbol	ool Parameter Conditions		Min.	Тур.	Max.	Unit		
Class D St	age							
V _{DD}	Supply Voltage Range			2.7		5.5	V	
I _Q	Quiescent Current	No Load			15	25	mA	
Vos	Output Offset Voltage	No Load			10	50	mV	
D	Drain-Source On-State	1 0 5 4	P MOSFET		0.35		0	
R _{DS(ON)}	Resistacne	I _{DS} =0.5A	N MOSFET		0.25		Ω	
D	Output Dowor	TUD $N_100/f_11/17$	$R_L=8\Omega$	1.55	1.7		W/	
Po	Output Power	THD+N=10%, f=1kHz	$R_L=4\Omega$	2.85	3.0		W	
THD+N	Total Harmonic Distortion	$R_{L}=8\Omega, P_{O}=0.85W$	f=1kHz		0.2		%	
I HD+N	Plus Noise	$R_{L}=4\Omega, P_{O}=1.75W$			0.2		70	
PSRR	Power Supply Ripple	Input AC-GND, f=1kHz, Vpp=200mV			40		dB	
Cs	Channel Separation	P ₀ =1W, f=1kHz			-80		dB	
f _{OSC}	Oscillator Frequency			250	300	350	kHz	
n	Efficiency	$P_0=1.7W$, f=1kHz, R _L =80	2	87	90		%	
η		$P_0=3.0W$, f=1kHz, R _L =4G	2	85	88		%	
Vn	Noise	Input AC-GND	A-weighting		275			
V II	INDISE	Input AC-OND	No A-weighting		450		μV	
SNR	Signal Noise Ratio	F=20-20kHz, THD=1%		85		dB		
Earphone	Stage							
IQ	Quiescent Current	No Load			7.5	12	mA	
V _{OS}	Output Offset Voltage	No Load			2.5		V	
Po	Output Power	THD+N=1%, R_L =32 Ω , f=	=1kHz		95		mW	

Electrical Characteristics (continued)

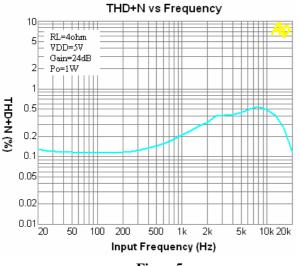
 $V_{DD}=5V$, Gain=Maximum, $R_L=8\Omega$, $T_A = +25^{\circ}C$ (Unless otherwise noted)

a			I					
Symbol	Parameter Condit		ons	Min.	Тур.	Max.	Unit	
THD+N	Total Harmonic Distortion Plus Noise	$R_L=32\Omega, P_O=10$ mW, f=1k		0.05		%		
PSRR	Power Supply Ripple Rejection	Input AC-GND, f=1kHz,	Vpp=200mV		40		dB	
Cs	Channel Separation	P _O =1W, f=1kHz			-85		dB	
Ve	Noise	Legist A.C. CND	A-weighting		15			
Vn	Noise	Input AC-GND	No A-weighting		26		μV	
SNR	Signal Noise Ratio	f=20-20kHz, THD=1%		90		dB		
Control S	ection	·						
UVLO	Under Voltage Lock-out				2		V	
I _{MUTE}	Mute Current	V _{MUTE} =0V			5	8	mA	
I _{SHDN}	Shutdown Current	V _{SHDN} =0V	V _{SHDN} =0V		0.2	1	μΑ	
V_{SH}	SHDN Input High			1.2				
V_{SL}	SHDN Input Low					0.5	V	
V_{MH}	MUTE Input High			1.2			v	
V _{ML}	MUTE Input Low					0.5	v	
OTP	Over Temperature Protection				165		°C	
OTH	Over Temperature Hysteresis				45		°C	

Table 1. DC Volume Control


Table 1. DC Volume Control									
VOLUME POSITION			VOLUME LTAGE AS A		PIN VO	VOLUME LTAGE AS OF VDC)	Class D	HP Coin (dP)	
FUSITION	PERCENT	AGE C	9F VDC) (%)	AFERCE	(%)		Gain (dB)	Gain (dB)	
0	0.0	-	3.8	2.8	-	0.0	-70.0	-96.6	
1	3.8	-	5.4	4.4	-	2.8	-41.6	-40.0	
2	5.4	-	6.8	5.8	-	4.4	-35.1	-37.9	
3	6.8 8.2	-	8.2 9.6	7.2 8.6	-	5.8 7.2	-26.9 -19.4	-35.9 -33.9	
5	9.6		9.0	10.0	-	8.6	-19.4	-31.9	
6	11.0	-	12.4	11.4	_	10.0	-8.5	-29.9	
7	12.4	-	13.8	12.8	-	11.4	-6.0	-28.9	
8	13.8	-	15.2	14.2	-	12.8	-3.6	-27.8	
9	15.2	-	16.4	15.6	-	14.2	-1.1	-26.8	
10	16.4	-	17.8	17.0	-	15.6	1.3	-25.8	
11	17.8	-	19.2	18.4	-	17.0	2.8	-24.8	
12	19.2	-	20.6	19.8	-	18.4	4.3	-23.9	
13	20.6	-	22.0	21.2	-	19.8	5.3	-22.9	
14 15	22.0	-	23.4	22.6	-	21.2	5.7	-22.1	
	23.4	-	24.8	24.0	-	22.6	6.1	-21.3	
16 17	24.8 26.2	-	26.2 27.6	25.4 26.8	-	24.0 25.4	6.5 6.9	-20.5 -19.7	
17	20.2	-	27.0	28.2	-	26.8	7.3	-19.7	
10	27.0	-	30.4	28.2	_	28.2	7.3	-18.1	
20	30.4	-	31.6	31.0	-	29.6	8.1	-17.3	
21	31.6	-	33.2	32.4	-	31.0	8.6	-16.5	
22	33.2	-	34.6	33.8	-	32.4	9.0	-15.8	
23	34.6	-	36.0	35.2	-	33.8	9.4	-15.1	
24	36.0	-	37.6	36.6	-	35.2	9.8	-14.4	
25	37.6	-	39.0	38.0	-	36.6	10.2	-13.7	
26	39.0	-	40.4	39.4	-	38.0	10.6	-13.1	
27	40.4	-	41.8	40.8	-	39.4	11.0	-12.4	
28 29	41.8	-	43.2	42.2	-	40.8	11.4	-11.7	
29 30	43.2 44.6	-	44.6	43.6 45.0	-	42.2 43.6	11.8 12.2	-11.0 -10.4	
31	44.0		40.0	45.0	_	45.0	12.2	-10.4	
32	47.4	-	48.8	47.8	-	46.4	13.0	-9.2	
33	48.8	-	50.2	49.2	-	47.8	13.4	-8.6	
34	50.2	-	51.6	50.6	-	49.2	13.8	-8.0	
35	51.6	-	53.0	52.0	-	50.6	14.2	-7.4	
36	53.0	-	54.4	53.4	-	52.0	14.6	-6.8	
37	54.4	-	55.8	54.8	-	53.4	15.0	-6.2	
38	55.8	-	57.2	56.2	-	54.8	15.4	-5.7	
39	57.2	-	58.6	57.4	-	56.2	15.8	-5.2	
40	58.6	-	60.0	59.0	-	57.4	16.2	-4.7	
41 42	60.0	-	61.4	60.4	-	59.0	16.6	-4.2	
42	61.4 62.8	-	62.8 64.2	61.8 63.2	-	60.4 61.8	17.0 17.4	-3.7 -3.2	
43	62.8	-	65.6	64.6	-	63.2	17.4	-3.2 -2.7	
45	65.6	-	67.0	66.0	-	64.6	17.8	-2.7	
46	67.0	-	68.4	67.4	-	66.0	18.6	-1.8	
47	68.4	-	69.8	68.8	-	67.4	19.0	-1.4	
48	69.8	-	71.2	70.2	-	68.8	19.4	-1.0	
49	71.2	-	72.6	71.6	-	70.2	19.8	-0.6	
50	72.6	-	74.0	73.0	-	71.6	20.2	-0.2	
51	74.0	-	75.4	74.4	-	73.0	20.6	0.2	
52	75.4	-	76.8	75.8	-	74.4	21.0	0.6	
53	76.8	-	78.2	77.2	-	75.8	21.4	0.9	
54	78.2	-	79.6	78.6	-	77.2	21.8	1.2	
55 56	79.6	-	81.0	80.0	-	78.6	22.2	1.5	
56 57	81.0	-	82.4	81.4	-	80.0	22.6	1.8	
57 58	82.4 83.8	-	83.8 85.2	82.8 84.2	-	81.4 82.8	23.0 23.4	2.1 2.4	
58 59	85.2	-	85.2	84.2 85.6	-	82.8	23.4	2.4	
60	86.6		88.0	83.0	-	85.6	23.8	2.7	
61	88.0	_	89.4	88.4	_	87.0	24.6	3.1	
62	89.4	-	90.8	89.8	-	88.4	25.0	3.3	
63	90.8	-	100.0	100.0	-	89.8	25.4	3.5	

DS2035 Ver 0.1 Jan. 2011



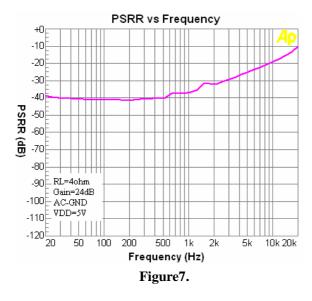

Typical Characteristics

Figure3.

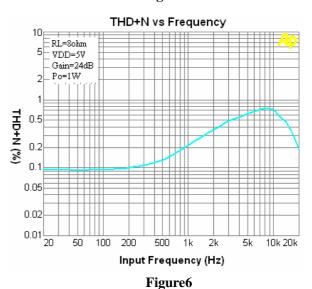
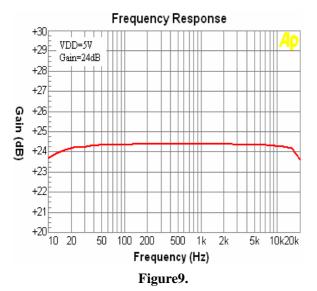
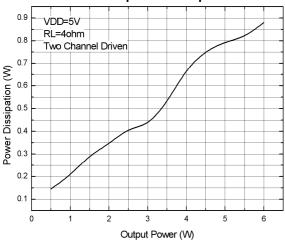


Figure4.




Crosstalk vs Frequency +0p RL=4ohm VDD=5V -10 Gain=24dB -20 Vo=1Vrms -30 Crosstalk (dB) -40 -50 -60 R to L -70 -80 L to R -90 -100^E____20 50 100 200 500 1k 2k 5k 10k 20k Frequency (Hz) Figure8.



Typical Characteristics (continued)

Figure11.

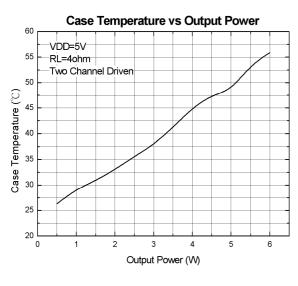


Figure13.

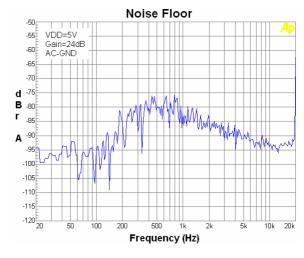


Figure10.

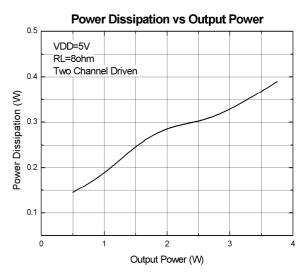
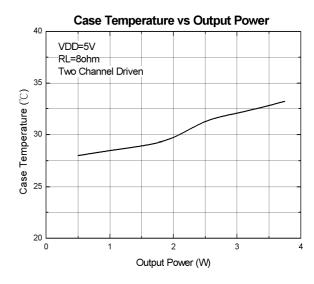
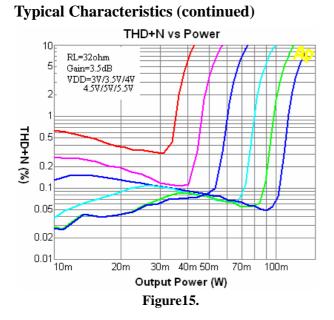
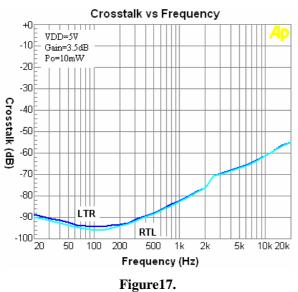
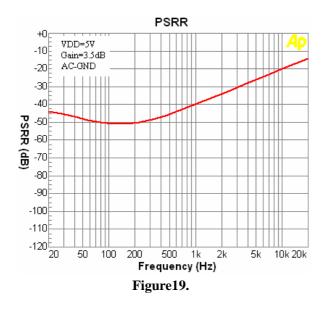


Figure12.


Figure14.

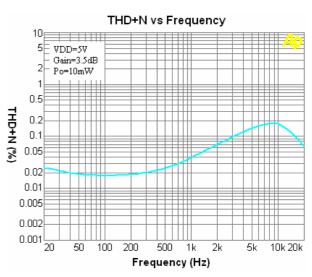
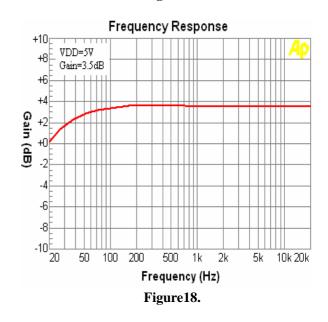
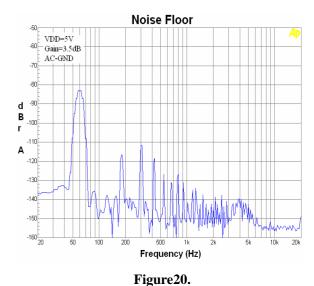
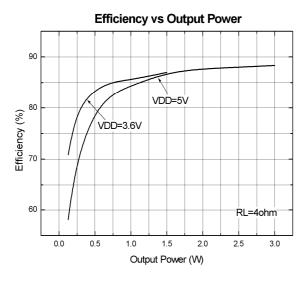
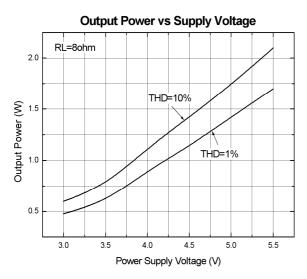
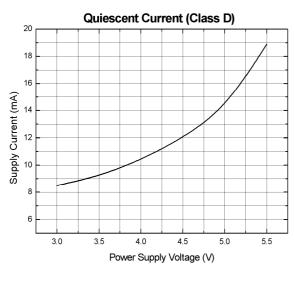
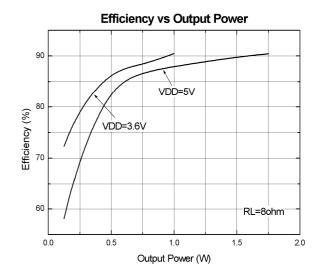




Figure16.






Typical Characteristics (continued)


Figure21.

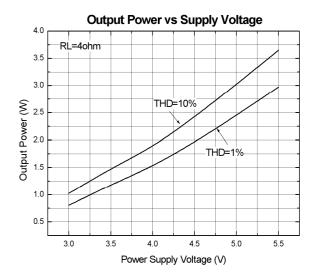


Figure22.

Figure24.

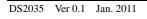



Figure26.

Typical Characteristics (continued)

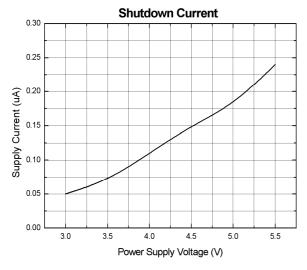


Figure27.

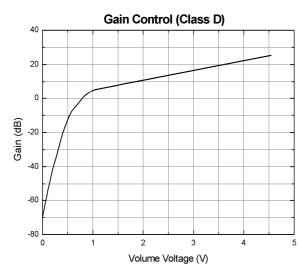
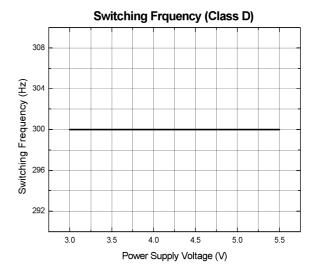



Figure29.

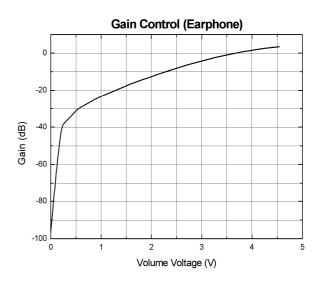
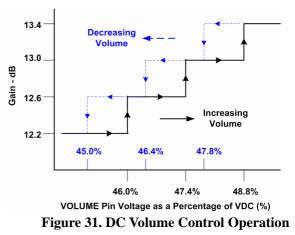


Figure30.

Application Information Volume Control Operation

The VOLUME terminal controls the internal amplifier gain. This pin is controlled with a dc voltage, which should not exceed VDC. Table 1 lists the gain as determined by the voltage on the VOLUME pin in reference to the voltage on VDC.


If using a resistor divider to fix the gain of the amplifier, the VDC terminal can be directly connected to VDD and a resistor divider can be connected across VDC and AGND. For fixed gain, calculate the resistor divider values necessary to center the voltage between the two percentage points given in the first column of Table 1.

If using a DAC to control the class-D gain, VDC and AGND should be connected to the reference voltage for the DAC and the GND terminal of the DAC, respectively. For the DAC application, VDD would be left unconnected to VDC. The reference voltage of the DAC provides the reference to the internal gain circuitry through the VDC input and any fluctuations in the DAC output voltage will not affect the EUA2035 gain. The percentages in the first column of Table 1 should be used for setting the voltages of the DAC when the voltage on the VOLUME terminal is increased. The percentages in the second column should be used for the DAC voltages when decreasing the voltage on the VOLUME terminal. Two lookup tables should be used in software to control the gain based on an increase or decrease in the desired system volume.

If using an analog potentiometer to control the gain, it should be connected between VDC and AGND. VDC can be connected to VDD or an external voltage source, if desired. The 2nd and 3rd column in Table 1 should be used to determine the point at which the gain changes depending on the direction that the potentiometer is turned. If the voltage on the center tap of the potentiometer is increasing, the 2nd column in Table 1 should be referenced to determine the trip points. If the voltage is decreasing, the trip points in the 3rd column should be referenced.

The trip point, where the gain actually changes, is different depending on whether the voltage on the VOLUME terminal is increasing or decreasing as a result of hysteresis about each trip point. The hysteresis ensures that the gain control is monotonic and does not oscillate from one gain step to another. A pictorial representation of the volume control can be found in Figure 31.

The timing of the volume control circuitry is controlled by an internal 30-Hz clock. This clock determines the rate at which the gain changes when adjusting the voltage on the external volume control pins. The gain updates every clock cycle (nominally 32 ms) to the next step until the final desired gain is reached. For example, if the EUA2035 is currently in the 0 dB gain step and the VOLUME pin is adjusted for maximum gain at +25 dB, the time required for the gain to reach +25 dB is 54 steps x 32 ms/step = 1.728 seconds.

FADE Operation

During power-up or recovery from the shutdown state (a logic high is applied to the \overline{SHDN} terminal), the volume is smoothly ramped up from the mute state, -70 dB, to the desired volume setting determined by the voltage on the volume control terminal. Conversely, the volume is smoothly ramped down from the current state to the mute state when a logic low is applied to the \overline{SHDN} terminal.

Auto Gain Control Function

The AGC works by detecting the audio input envelope. The gain changes depending on the amplitude, the power supply level, and the attack and release time. The gain changes constantly as the audio signal increases and/or decreases to suppress the clipped output signal. The gain step size for the AGC is 2dB. The maximum attenuation is -12dB(preset gain=24dB). The attack time is 24ms and the released time is 1.5Sec per step.

MUTE Operation

The $\overline{\text{MUTE}}$ pin is an input for controlling the output state of the EUA2035. A logic low on this pin disables the outputs, and a logic high on this pin enables the outputs. This pin may be used as a quick disable or enable of the outputs without a volume fade. Quiescent <u>current</u> is listed in the electrical characteristic table. The MUTE pin can't be left floating.

SHDN Operation

In order to reduce power consumption while not in use, the EUA2035 contains shutdown circuitry to turn off the amplifier's bias circuitry. The amplifier is turned off when logic low is placed on the \overline{SHDN} pin. By switching the \overline{SHDN} pin connected to GND, the EUA2035 supply current draw will be minimized in idle mode. The \overline{SHDN} pin can't be left floating.

For the best power on/off pop performance, the amplifier should be placed in the Mute mode prior to turning on/off the power supply.

Power Supply Decoupling

The EUA2035 is a high performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output THD and PSRR are as low as possible. Power supply decoupling affects low frequencon the power supply leads. For higher frey response. Optimum decoupling is achieved by using two capacitors of different types that target different types of noise quency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance/(ESR) ceramic capacitor, typically 1.0 μ F, placed as close as possible to the device V_{DD} terminal works best. For filtering lower-frequency noise signals, a large capacitor of 10 μ F (ceramic) or greater placed near the audio power amplifier is recommended.

Input Capacitor (Ci)

Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance. In this case, input capacitor (Ci) and input resistance (Ri) of the amplifier form a high-pass filter with the corner frequency determined equation below,

$$f_{\rm C} = \frac{1}{2\pi {\rm RiCi}}$$

In addition to system cost and size, click and pop performance is affected by the size of the input coupling capacitor, Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2 V_{DD}). This charge comes from the internal circuit via the feedback and is apt to create pops upon device enable, Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.

Analog Reference Bypass Capacitor (C_{BYP})

The Analog Reference Bypass Capacitor (C_{BYP}) is the most critical capacitor and serves several important functions. During start-up or recovery from shutdown mode, C_{BYP} determines the rate at which the amplifier starts up. The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the internal analog reference to the amplifier, which appears as degraded PSRR and THD+N.

A ceramic bypass capacitor (C_{BYP}) of 0.47µF to 1.0µF is recommended for the best THD and noise performance. Increasing the bypass capacitor reduces clicking and popping noise from power on/off and entering and leaving shutdown.

Under Voltage Lock-Out (UVLO)

The EUA2035 incorporates circuitry designed to detect when the supply voltage is low. when the supply voltage drops to 1.9V or below, the eua2035 outputs are disable, and the device comes out of this state and starts to normal functional once V_{DD} >2.0V.

Short Circuit Protection (SCP)

The EUA2035 has short circuit protection circuitry on the outputs that prevents the device from damage when output-to-output and output-to-GND short. When a short circuit is detected on the outputs, the outputs are disable immediately. If the short was removed, the device activates again.

Over Temperature Protection

Thermal protection on the EUA2035 prevents the device from damage when the internal die temperature exceeds 165°C. Once the die temperature exceeds the thermal set point, the device outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by 40°C. This large hysteresis will prevent motor boating sound well. The device begins normal operation at this point without external system interaction.

How to Reduce EMI

(Electro Magnetic Interference)

A simple solution is to put an additional capacitor 1000μ F at power supply terminal for power line coupling if the traces from amplifier to speakers are short (<20CM).

Most applications require a ferrite bead filter as shown at Figure 32. The ferrite filter reduces EMI around 1MHz and higher. When selecting a ferrite bead, choose one with high impedance at low frequencies.

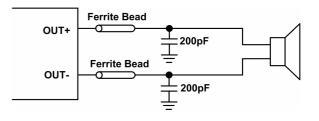
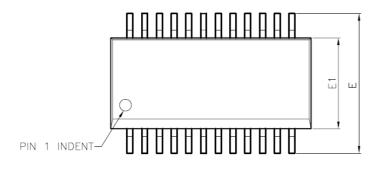
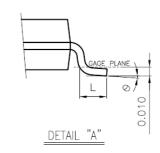
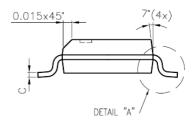


Figure 32.




<u>Preliminary</u>




Packaging Information

SSOP-24

SYMBOLS	Ν	/ILLIMETER	S	INCHES				
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	1.35	1.63	1.75	0.053	0.064	0.069		
A1	0.10	0.15	0.25	0.004	0.006	0.010		
A2	1.37	1.45	1.52	0.054	0.057	0.060		
b	0.20	0.25	0.30	0.008	0.010	0.012		
С	0.18	0.20	0.25	0.007	0.008	0.010		
D	8.56	8.66	8.74	0.337	0.341	0.344		
Е	5.79	5.99	6.20	0.228	0.236	0.244		
E1	3.81	3.91	3.99	0.150	0.154	0.157		
e		0.64 BSC			0.025 BSC			
L	0.41	0.64	1.27	0.016	0.025	0.050		
Θ	0°	_	8°	0°		8°		