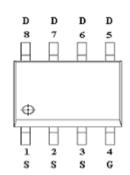
# **SPN4392W** N-Channel Enhancement Mode MOSFET

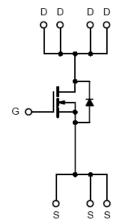
#### **DESCRIPTION**

The SPN4392W is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

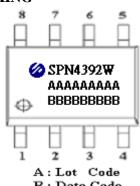
This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application, notebook computer power management and other battery powered circuits where high-side switching.


#### **FEATURES**


- 30V/13A, RDS(ON)=  $8m\Omega$ @VGS=10V
- 30V/10A, RDS(ON)=  $12m\Omega$ @VGS=4.5V
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- SOP 8P package design

#### **APPLICATIONS**


- Power Management in Note book
- Portable Equipment
- **Battery Powered System**
- High-Side DC/DC Converter
- Load Switch
- **DSC**
- LCD Display inverter

## PIN CONFIGURATION(SOP – 8P)





# PART MARKING



B: Date Code

## **PIN DESCRIPTION**

| Pin | Symbol | Description |  |
|-----|--------|-------------|--|
| 1   | S      | Source      |  |
| 2   | S      | Source      |  |
| 3   | S      | Source      |  |
| 4   | G      | Gate        |  |
| 5   | D      | Drain       |  |
| 6   | D      | Drain       |  |
| 7   | D      | Drain       |  |
| 8   | D      | Drain       |  |

## **ORDERING INFORMATION**

| Part Number   | Package | Part Marking |
|---------------|---------|--------------|
| SPN4392WS8RGB | SOP- 8P | SPN4392W     |

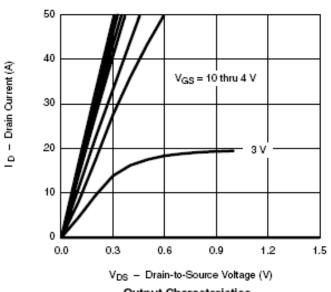
<sup>※</sup> SPN4392WS8RGB: 13" Tape Reel; Pb − Free; Halogen - Free

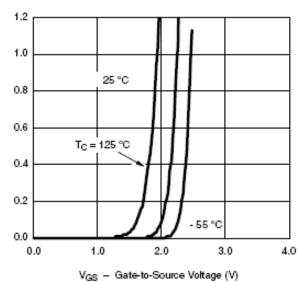
## ABSOULTE MAXIMUM RATINGS

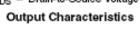
(Ta=25°C Unless otherwise noted)

| Parameter                                       |         | Symbol            | Typical | Unit                   |
|-------------------------------------------------|---------|-------------------|---------|------------------------|
| Drain-Source Voltage                            |         | Vdss              | 30      | V                      |
| Gate –Source Voltage                            |         | VGSS              | ±20     | V                      |
| Continuous Drain Current(T <sub>J</sub> =150°C) | TA=25°C | ID                | 13      | A                      |
| Continuous Diani Current (13–130 C)             | TA=70°C | ID                | 10      | A                      |
| Pulsed Drain Current                            | Ірм     | 50                | A       |                        |
| Continuous Source Current(Diode Conduction)     |         | Is                | 5.6     | A                      |
| Doman Dissination                               | TA=25°C | - P <sub>D</sub>  | 2.5     | W                      |
| Power Dissipation                               | TA=70°C |                   | 1.6     | W                      |
| Operating Junction Temperature                  |         | Тл                | -55/150 | $^{\circ}\mathbb{C}$   |
| Storage Temperature Range                       |         | Tstg              | -55/150 | $^{\circ}\!\mathbb{C}$ |
| Thermal Resistance-Junction to Ambient          |         | R <sub>θ</sub> JA | 80      | °C/W                   |

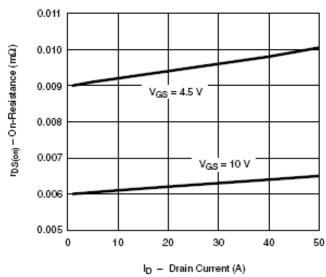
# **ELECTRICAL CHARACTERISTICS**

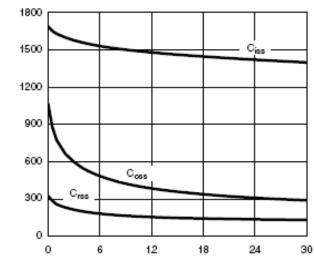

(TA=25°C Unless otherwise noted)


| Parameter                       | Symbol              | Conditions                                             | Min. | Тур   | Max.  | Unit       |  |  |
|---------------------------------|---------------------|--------------------------------------------------------|------|-------|-------|------------|--|--|
| Static                          |                     |                                                        |      |       |       |            |  |  |
| Drain-Source Breakdown Voltage  | V(BR)DSS            | $V_{GS} = 0V$ , $I_D = 250uA$                          | 30   |       |       | V          |  |  |
| Gate Threshold Voltage          | VGS(th)             | $V_{DS} = V_{GS}, I_{DS} = 250uA$                      | 1.0  |       | 2.0   | V          |  |  |
| Gate Leakage Current            | Igss                | $V_{DS} = 0V, V_{GS} = \pm 20 \text{ V}$               |      |       | ±100  | nA         |  |  |
|                                 |                     | $V_{DS} = 24V, V_{GS} = 0V$                            |      |       | 1     |            |  |  |
| Zero Gate Voltage Drain Current | IDSS                | $V_{DS} = 24V, V_{GS} = 0V,$<br>$T_J = 55C$            |      |       | 100   | uA         |  |  |
| Drain-Source On-Resistance      | RDS(on)             | $V_{GS} = 10V, ID = 13A$                               |      | 0.006 | 0.008 | Ω          |  |  |
|                                 | $V_{GS} = 4.5V, ID$ |                                                        |      | 0.009 | 0.012 | 2          |  |  |
| Forward Transconductance        | gfs                 | $V_{DS} = 15V$ , $I_{D} = 20 A$                        | 10   |       |       | S          |  |  |
| Diode Forward Voltage           | Vsd                 | $I_F = 13 \text{ A}, V_{GS} = 0V$                      |      | 1.0   | 1.5   | V          |  |  |
| Dynamic                         |                     |                                                        |      |       |       |            |  |  |
| Total Gate Charge               | Qg                  | 4.5                                                    |      | 12    | 20    | nC         |  |  |
| Gate-Source Charge              | Qgs                 | $V_{DS} = 15V, V_{GS} = 5V,$<br>$I_{D} = 13 \text{ A}$ |      | 4     |       |            |  |  |
| Gate-Drain Charge               | Qgd                 | 1371                                                   |      | 5     |       | ] <b> </b> |  |  |
| Input Capacitance               | Ciss                |                                                        |      | 1500  |       | pF         |  |  |
| Output Capacitance              | Coss                | $V_{GS} = 0V$ , $V_{DS} = 25V$ ,<br>F=1MHz             |      | 320   |       |            |  |  |
| Reverse Transfer Capacitance    | Crss                |                                                        |      | 200   |       |            |  |  |
| Turn-On Time                    | td(on)              |                                                        |      | 8     | 12    | ns         |  |  |
|                                 | tr                  | $(V_{DD} = 15 \text{ V}, I_D = 13 \text{ A},$          |      | 10    | 15    |            |  |  |
| T 067 T                         | td(off)             | $V_{GS}=10V,R_G=2.5\Omega)$                            |      | 18    | 30    |            |  |  |
| Turn-Off Time                   | tf                  |                                                        |      | 6     | 9     |            |  |  |


D - Drain Ourrent (A)

C – Capacitance (pF)

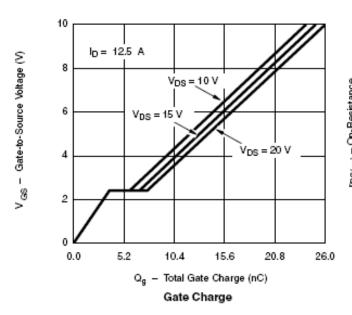

## TYPICAL CHARACTERISTICS

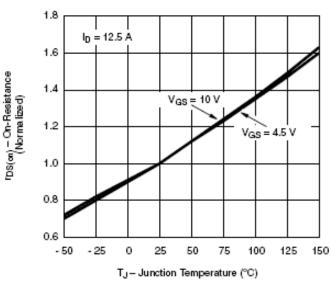




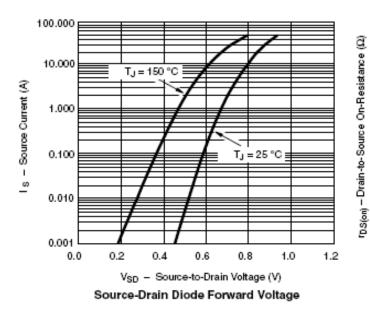


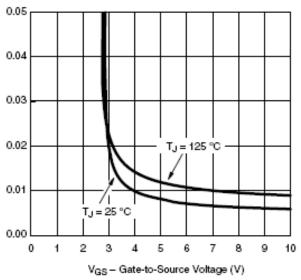


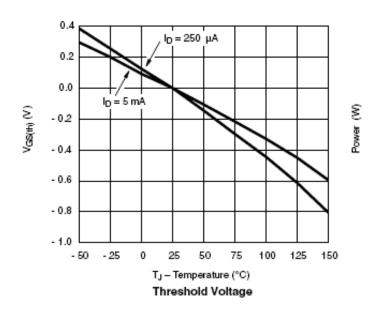

On-Resistance vs. Drain Current and Gate Voltage

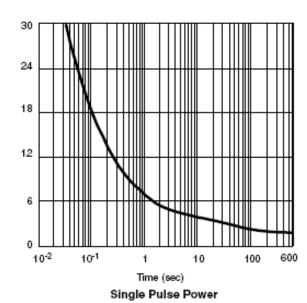

V<sub>DS</sub> - Drain-to-Source Voltage (V) Capacitance

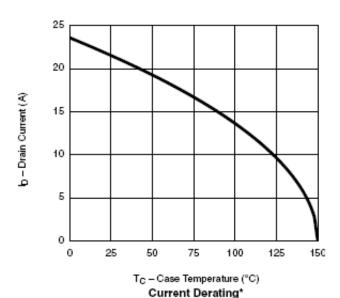

## TYPICAL CHARACTERISTICS

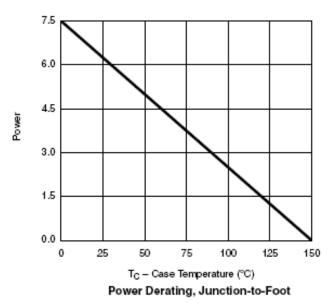




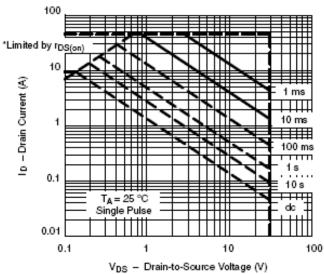




On-Resistance vs. Gate-to-Source Voltage

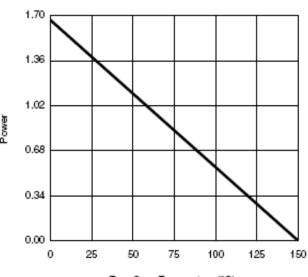
# TYPICAL CHARACTERISTICS



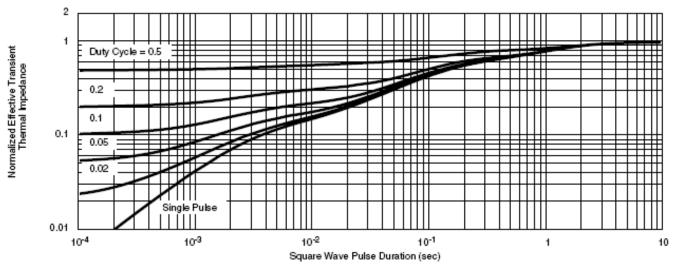








## TYPICAL CHARACTERISTICS

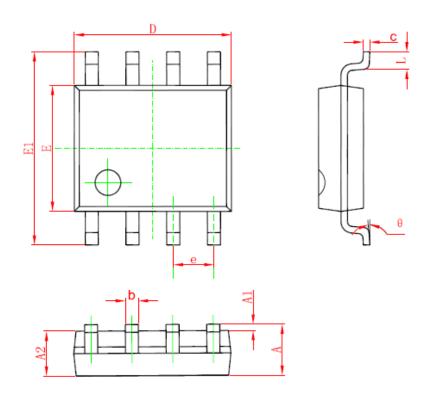



V<sub>DS</sub> - Drain-to-Source Voltage (V)

\*V<sub>GS</sub> > minimum V<sub>GS</sub> at which r<sub>DS(cn)</sub> is specified

Safe Operating Area, Junction-to-Ambient




T<sub>C</sub> – Case Temperature (°C)
Power, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Foot



# **SOP- 8 PACKAGE OUTLINE**



| Combail | Dimensions In Millimeters |        | Dimensions In Inches |        |  |
|---------|---------------------------|--------|----------------------|--------|--|
| Symbol  | Min                       | Max    | Min                  | Max    |  |
| А       | 1. 350                    | 1. 750 | 0.053                | 0.069  |  |
| A1      | 0. 100                    | 0. 250 | 0.004                | 0.010  |  |
| A2      | 1. 350                    | 1. 550 | 0.053                | 0.061  |  |
| b       | 0. 330                    | 0. 510 | 0.013                | 0. 020 |  |
| С       | 0. 170                    | 0. 250 | 0.006                | 0.010  |  |
| D       | 4. 700                    | 5. 100 | 0. 185               | 0. 200 |  |
| E       | 3. 800                    | 4. 000 | 0. 150               | 0. 157 |  |
| E1      | 5. 800                    | 6. 200 | 0. 228               | 0. 244 |  |
| е       | 1. 270 (BSC)              |        | 0. 050 (BSC)         |        |  |
| L       | 0. 400                    | 1. 270 | 0.016                | 0.050  |  |
| θ       | 0°                        | 8°     | 0°                   | 8°     |  |

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation
©2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178

Fax: 886-2-2655-8468 ©http://www.syncpower.com